MapReduce 下的WC程序
mapper
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* KEYIN, map阶段输入的KEY的类型:LongWritable
* VALUEIN, map阶段输入的VALUE的类型:text
* KEYOUT, map阶段输出的key类型:Text
* VALUEOUT,map阶段输出的value类型:intwritable
*/
public class WorkCountMapper extends Mapper <LongWritable, Text,Text, IntWritable>{
private Text outK = new Text();
private IntWritable outV=new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.获取一行
//root root
String line = value.toString();
//2.切割
//root
//root
String[] words = line.split(" ");
//3.循环写出
for (String word : words) {
//封装
outK.set(word);
//写出
context.write(outK,outV);
}
}
}
Reducer
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* KEYIN, map阶段输入的KEY的类型:text
* VALUEIN, map阶段输入的VALUE的类型:intwritable
* KEYOUT, map阶段输出的key类型:Text
* VALUEOUT,map阶段输出的value类型:intwritable
*/
public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//root,(1,1)
//ss,(1,1)
int sum=0;
for (IntWritable value : values) {
sum+=value.get();
}
outV.set(sum);
//写出
context.write(key,outV);
}
}
Driver
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WordCountDriver {
private static boolean result;
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2.设置jar包路径
job.setJarByClass(WordCountDriver.class);
//3.关联mapper和reducer
job.setMapperClass(WorkCountMapper.class);
job.setReducerClass(WordCountReducer.class);
//4.设置map输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//5.设置最终输出的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//6.设置输入路径和输出路径
FileInputFormat.setInputPaths(job,new Path("D:\HadoopProject\MapReduceDemo\input"));
//输出output为没有创建过的文件夹
FileOutputFormat.setOutputPath(job,new Path("D:\HadoopProject\MapReduceDemo\output"));
//7.提交job
job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
Spark下的WC程序
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object Spark01_WordCount {
def main(args: Array[String]): Unit = {
// Application
// Spark框架
// TODO 建立和Spark框架的连接
// JDBC : Connection
val sparConf = new SparkConf().setMaster("local").setAppName("WordCount")
val sc = new SparkContext(sparConf)
// TODO 执行业务操作
// 1. 读取文件,获取一行一行的数据
// hello world
val lines: RDD[String] = sc.textFile("datas/*")
// 2. 将一行数据进行拆分,形成一个一个的单词(分词)
// 扁平化:将整体拆分成个体的操作
// "hello world" => hello, world, hello, world
val words: RDD[String] = lines.flatMap(_.split(" "))
// 3. 将数据根据单词进行分组,便于统计
// (hello, hello, hello), (world, world)
val wordGroup: RDD[(String, Iterable[String])] = words.groupBy(word=>word)
// 4. 对分组后的数据进行转换
// (hello, hello, hello), (world, world)
// (hello, 3), (world, 2)
val wordToCount = wordGroup.map {
case ( word, list ) => {
(word, list.size)
}
}
// 5. 将转换结果采集到控制台打印出来
val array: Array[(String, Int)] = wordToCount.collect()
array.foreach(println)
// TODO 关闭连接
sc.stop()
}