程序员的 AI 启蒙课,ChatGPT 辅助开发 Vue3 项目
核心代码,注释必读
// download:
3w ukoou com
1.概述
随着人工智能技术的不断发展,越来越多的AI产品被应用到各个领域,其中最具代表性的莫过于人工智能语言模型。语言模型是一种可以通过学习大量语言数据来预测文本或语音的技术,其应用范围十分广泛,如智能客服、机器翻译、语音助手等。
而ChatGPT是其中最为优秀的语言模型之一。ChatGPT是OpenAI公司开发的一款基于自然语言处理技术的对话生成模型,其采用了GPT架构(Generative Pre-trained Transformer),能够自动学习自然语言数据的特征,并生成高质量的语言文本。在近几年的发展中,ChatGPT已经成为了AI时代的语言沟通利器,它的应用范围不断扩大,其产生的影响也日益显现。本篇博客,笔者将为大家来介绍一下ChatGPT的API使用。
2.内容
在介绍ChatGPT API之前,我们先来了解一下它的优点、应用前景、发展前景等,内容如下:
2.1 ChatGPT优点
- 自然度高:ChatGPT的生成文本十分自然,很难被区分出是由AI生成的还是由人生成的。这是因为ChatGPT采用了Transformer模型的架构,可以在学习过大量语言数据后,自动生成高质量的文本。
- 高效性:ChatGPT的生成速度非常快,可以在很短的时间内生成大量高质量的文本,使得在一些需要快速生成大量文本的应用场景中十分适用。
- 适应性强:ChatGPT能够适应不同的对话场景,对于不同的用户提出的问题或者不同的应用场景,都能够进行相应的回答或者生成相应的文本,非常灵活。
2.2 ChatGPT的应用场景
- 智能客服:随着互联网技术的不断发展,越来越多的企业开始提供在线客服服务,而ChatGPT的优秀语言生成能力,使得它能够成为智能客服的重要组成部分。ChatGPT能够快速、准确地回答用户的问题,可以有效提升客服工作效率,减少人力成本。
- 机器翻译:在全球化的背景下,机器翻译技术的应用越来越广泛。ChatGPT的优秀语言生成能力,可以使得翻译结果更加自然,减少翻译过程中的误差,提高翻译质量。
- 智能家居:智能家居是一种通过智能化技术来提升居住环境的舒适度和便利性的方式。ChatGPT可以作为智能家居的对话生成模型,通过对话交互来控制家居设备,提高智能家居的使用体验。
2.3 ChatGPT的发展前景
作为一款在自然语言处理领域非常优秀的模型,ChatGPT在未来的发展中有着广阔的前景。
- 多语言支持:随着全球化的加速,多语言支持成为了人工智能语言模型的一个重要发展方向。未来的ChatGPT可以通过学习不同语言的语言数据,实现多语言支持,为不同地区、不同语种的用户提供更好的服务。
- 更加智能化:ChatGPT可以通过学习大量的对话数据,从中提取出用户需求的关键信息,进一步提升对话的智能化水平。未来的ChatGPT可以实现更加智能化的对话交互,使得用户体验更加舒适、便利。
- 应用场景扩展:随着ChatGPT的不断发展,其应用场景也将会不断扩展。未来的ChatGPT可以应用于更多的领域,如医疗、金融、法律等,为用户提供更加精准、高效的服务。
3.API应用
ChatGPT API是一种基于云计算的语言模型API,可以提供自然语言处理(NLP)和对话生成的能力。它可以帮助开发者在自己的应用程序中快速地集成和使用ChatGPT模型,实现智能对话和交流。下面是一些ChatGPT API应用的案例:
1.智能客服
ChatGPT API可以帮助企业和组织实现智能客服功能,使客户能够通过自然语言与企业进行对话和交流。在智能客服场景中,ChatGPT API可以实现对话生成和意图识别等功能,帮助客户解决问题和提供服务。
2.聊天机器人
ChatGPT API可以帮助开发者构建自己的聊天机器人,实现自然、流畅、智能的对话。开发者可以通过ChatGPT API提供的接口,实现对话生成、情感分析、实体识别等功能,使聊天机器人具有更加智能和人性化的交流方式。
3.语音助手
ChatGPT API可以与语音识别技术相结合,实现智能语音助手的功能。通过ChatGPT API提供的接口,语音助手可以理解用户的意图和问题,并提供相应的回答和服务。同时,还可以实现多轮对话和个性化服务等功能,提高用户体验和满意度。
4.社交娱乐
ChatGPT API可以帮助社交应用程序实现更加智能和有趣的交流功能。例如,在社交娱乐场景中,可以通过ChatGPT API提供的接口,实现自动回复、情感识别、趣味对话等功能,增强用户的互动和娱乐体验。
总的来说,ChatGPT API是一种非常有用和强大的技术,可以帮助开发者快速地构建智能应用程序,实现自然、流畅、智能的对话和交流。在具体的应用中,需要根据不同的场景和需求,选择合适的API接口和技术组合,以提高应用的性能和可靠性。随着技术的不断发展和完善,我们相信ChatGPT API将会在更多的领域和场景中发挥出它的价值和作用。
4.API代码实现
首先,我们来测试一个简单的API,示例代码如下所示:
curl https://api.openai.com/v1/completions \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer YOUR_API_KEY' \
-d '{
"model": "text-davinci-003",
"prompt": "Say this is a test",
"max_tokens": 7,
"temperature": 0
}'
这里的YOUR_API_KEY密钥,可以从OpenAI申请创建。执行结果如下:
{
"id": "cmpl-6oAwZvNHj7fQlxSzLGeJL5i3A4016",
"object": "text_completion",
"created": 1677416487,
"model": "text-davinci-003",
"choices": [
{
"text": "\n\nThis is indeed a test",
"index": 0,
"logprobs": null,
"finish_reason": "length"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 7,
"total_tokens": 12
}
}
4.1 Python实现
要使用ChatGPT API实现智能对话和交流,我们需要先获取API的访问密钥,然后使用API提供的接口和参数,发送HTTP请求并处理响应结果。下面是一个使用Python实现ChatGPT API的示例代码:
import requests
import json
# Set the API endpoint and access token
api_endpoint = "https://api.openai.com/v1/engines/davinci-codex/completions"
access_token = "<your-access-token>"
# Set the prompt text and parameters
prompt_text = "Hello, how are you today?"
params = {
"prompt": prompt_text,
"temperature": 0.7,
"max_tokens": 60,
"top_p": 1,
"frequency_penalty": 0.5,
"presence_penalty": 0.0
}
# Send the API request
headers = {"Content-Type": "application/json",
"Authorization": f"Bearer {access_token}"}
response = requests.post(api_endpoint, headers=headers, json=params)
# Process the API response
if response.status_code == 200:
response_text = json.loads(response.text)["choices"][0]["text"]
print(f"ChatGPT response: {response_text}")
else:
print(f"Error: {response.status_code} - {response.text}")
在上面的代码中,我们首先设置了API的访问密钥和访问端点。然后,我们设置了对话的文本和一些生成对话的参数。接着,我们使用Python的requests库发送HTTP POST请求,将对话文本和参数作为JSON数据发送给API,并将响应结果转换为文本格式。最后,我们处理API的响应结果,将生成的对话文本输出到控制台。
需要注意的是,以上代码示例仅仅是ChatGPT API的一个简单应用,实际应用中需要根据具体的业务场景和需求,选择合适的API接口和参数。同时,还需要注意API的访问频率和响应速度等因素,以保证应用的性能和稳定性。
4.2 JavaScript实现
除了使用Python编写代码实现ChatGPT API的应用,还可以使用其他编程语言和工具来实现,例如JavaScript、Java、C#、Postman等。下面我们以JavaScript为例,介绍如何使用ChatGPT API生成智能对话。
在JavaScript中,我们可以使用fetch函数或者axios库来发送API请求。下面是一个使用axios库的示例代码:
const axios = require('axios');
// Set the API endpoint and access token
const apiEndpoint = 'https://api.openai.com/v1/engines/davinci-codex/completions';
const accessToken = '<your-access-token>';
// Set the prompt text and parameters
const promptText = 'Hello, how are you today?';
const params = {
prompt: promptText,
temperature: 0.7,
max_tokens: 60,
top_p: 1,
frequency_penalty: 0.5,
presence_penalty: 0.0
};
// Send the API request
const headers = {
'Content-Type': 'application/json',
'Authorization': `Bearer ${accessToken}`
};
axios.post(apiEndpoint, params, { headers })
.then(response => {
const responseText = response.data.choices[0].text;
console.log(`ChatGPT response: ${responseText}`);
})
.catch(error => console.error(error));
程序员的 AI 启蒙课,ChatGPT 辅助开发 Vue3 项目
以上代码中,我们首先引入了axios库,并设置了API的访问端点和访问密钥。然后,我们设置了对话的文本和一些生成对话的参数。接着,我们使用axios库发送HTTP POST请求,将对话文本和参数作为JSON数据发送给API,并将响应结果转换为文本格式。最后,我们处理API的响应结果,将生成的对话文本输出到控制台。
需要注意的是,以上代码示例同样仅仅是ChatGPT API的一个简单应用,实际应用中需要根据具体的业务场景和需求,选择合适的API接口和参数。同时,还需要注意API的访问频率和响应速度等因素,以保证应用的性能和稳定性。
为代码生成对应的单元测试代码 使用的 ChatGPT prompt:为下面这个<语言>实现的代码,编写对应的单元测试代码,然后将要生成单元测试的代码喂给 ChatGPT:
ChatGPT 会自动生成单元测试代码,我们可以在这些基础上,进行人工审查然后修改。 !](upload-images.jianshu.io/upload_imag…) 利用 ChatGPT 帮助自己研读经典框架的源代码 比如我是一个 Angular 开发人员,几乎每天都要和其标准库里的 HttpClient 工具库打交道。 假设我对其 request 方法感兴趣,想阅读其源代码,但是对于里面个别语句不甚理解:
那么我首先让 ChatGPT 给我介绍整个 request 方法大致完成一件什么事情,使用 prompt:逐行介绍一下下面这个方法的用途。这个方法来自 Angular common 开发包的 HttpClient 实现 http.mjs.
ChatGPT 给出的答复,我一目十行,很快就了解了这个方法的大致目的。
然后再给 ChatGPT 发出指令,提醒它要逐行介绍:我让你逐行介绍,你的介绍太简略了。
于是得到了我期望中的答案。 代码重构和性能优化 我首先故意写了一段存在性能问题的 ABAP 代码。这段代码首先从数据库表 tadir 里读取 200 条 Class 定义,然后循环这 200 条记录,在循环体内再次根据定义里的 Class 名称字段,到另一张数据库表 seoclasstx 里读取 Class 的描述信息。
这样应用服务器总共会对数据库服务器造成 1 + 200 = 201 次读取操作。 我询问 ChatGPT 以上代码是否存在可以优化的地方,ChatGPT 的回复一语中的,排在第一点的建议就非常切中要害:将第二个 SELECT 语句放在循环体之外:
我再对 ChatGPT 发出了指令:请给我一份性能优化,重构后的代码。 ChatGPT 也完美的完成了任务: 将第二个 SELECT 语句提至循环体外,现在数据库服务器总共的读取次数从 201 次降低到了 2 次。
阅读正则表达式觉得头疼?让 ChatGPT 来替我们阅读 下列这两段正则表达式是我负责的 SAP 电商云前台登录页面里,用户名和 password 两个字段验证值合法性的正则表达式: export const EMAIL_PATTERN = /^(([^<>()[].,;:\s@"]+(.[^<>()[].,;:\s@"]+))|(".+"))@(([[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}])|(([a-zA-Z-0-9]+.)+[a-zA-Z]{2,}))$/; // eslint-disable-line export const PASSWORD_PATTERN = /^(?=.?[A-Z])(?=.?[0-9])(?=.?[!@#%^*()_-+{};:.,]).{6,}/;
说实话这些晦涩的正则表达式语法,我从来就记不住,每一次都是要用的时候,才临时去翻语法文档。 有了 ChatGPT 之后,我可以直接让它告诉我这些正则表达式的设计思路:
利用 ChatGPT 帮助自己入门一个相对比较陌生的技术领域 我使用 Angular 开发已经有一段时间了,现在我想学习 React,因此向 ChatGPT 咨询,让它给我建议一些 React 的学习要点:
作为一个已经有 Angular 基础的前端开发人员,我最感兴趣的是 Angular 和 React 二者最大的区别是什么?从 ChatGPT 那里我得到了一些解答。 虽然我明白 ChatGPT 的回答只能作为参考,但至少它能够给我很多启发和灵感,作为我进一步到 React 官网开始精读和深入学习的指引。
以上就是我日常工作中一些使用 ChatGPT 提高开发效率的小心得。尽管 Google 搜索也能某种程度上满足我的需求,但是 Google 搜索需要我精心选择关键字,然后从搜索结果列表里手动筛选出需要继续阅读的网页。并且上面几个例子里正则表达式的解读,单元测试代码的自动生成,代码重构和性能优化的建议,现阶段 Google 还无法像 ChatGPT 这样能够以交互式的方式完成我发出的指令。