Tautology
| Time Limit: 1000MS | Memory Limit: 65536K | |
|---|---|---|
| Total Submissions: 10425 | Accepted: 3956 |
Description
WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:
- p, q, r, s, and t are WFFs
- if w is a WFF, Nw is a WFF
- if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
The meaning of a WFF is defined as follows:
- p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
- K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
| Definitions of K, A, N, C, and E |
|---|
| w x | Kwx | Awx | Nw | Cwx | Ewx |
|---|---|---|---|---|---|
| 1 1 | 1 | 1 | 0 | 1 | 1 |
| 1 0 | 0 | 1 | 0 | 0 | 0 |
| 0 1 | 0 | 1 | 1 | 1 | 0 |
| 0 0 | 0 | 0 | 1 | 1 | 1 |
A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.
You must determine whether or not a WFF is a tautology.
Input
Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.
Output
For each test case, output a line containing tautology or not as appropriate.
Sample Input
ApNp
ApNq
0
Sample Output
tautology
not
此题虽然做法是用构造法但是,还是用栈求表达式的方法。题目大意就是求出表达式若最后的表达式值为1输出
tautology,else有一个为假输出not,即看是否为永真式。
#include <iostream>
#include<cstdio>
#include<cstring>
char st[1000];
int q,p,s,r,t,c[1000];
using namespace std;
void D()
{
int z=0,x,y;
int l=strlen(st);
for(int i=l-1;i>=0;i--)//要倒着进行操作因为栈的处理最后进入的线处理
{
if(st[i]=='p')//p,q,r,s,t的取值只有0,1
c[z++]=p;
else if(st[i]=='q')
c[z++]=q;
else if(st[i]=='r')
c[z++]=r;
else if(st[i]=='s')
c[z++]=s;
else if(st[i]=='t')
c[z++]=t;
else if(st[i]=='K')
{
x=c[--z];
y=c[--z];
c[z++]=(x&&y);
}
else if(st[i]=='A')
{
x=c[--z];
y=c[--z];
c[z++]=(x||y);
}
else if(st[i]=='N')
{
x=c[--z];
c[z++]=(!x);
}
else if(st[i]=='C')
{
x=c[--z];
y=c[--z];
if(x==1&&y==0)
c[z++]=0;
else
c[z++]=1;
}
else if(st[i]=='E')
{
x=c[--z];
y=c[--z];
if( (x==0&&y==0)||(x==1&&y==1) )
c[z++]=1;
else
c[z++]=0;
}
}
}
int solve()
{
for(p=0;p<2;p++)
for(q=0;q<2;q++)
for(r=0;r<2;r++)
for(s=0;s<2;s++)
for(t=0;t<2;t++)
{
D();
if(c[0]==0)//有一个假就输出not
return 0;
}
return 1;
}
int main()
{
int n,m,i,j,k;
while(cin>>st)
{
if(!strcmp(st,"0"))
break;
if(solve())//注意并不是输入什么字符才进行对这些字符的处理,而是整体都考虑
cout<<"tautology"<<endl;
else
cout<<"not"<<endl;
}
return 0;
}