233 Matrix(矩阵快速幂+思维)

99 阅读1分钟

In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a 0,1 = 233,a 0,2 = 2333,a 0,3 = 23333...) Besides, in 233 matrix, we got ai,j = a i-1,j +a i,j-1( i,j ≠ 0). Now you have known a 1,0,a 2,0,...,a n,0, could you tell me a n,m in the 233 matrix?

Input

There are multiple test cases. Please process till EOF. 

For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 10 9). The second line contains n integers, a 1,0,a 2,0,...,a n,0(0 ≤ a i,0 < 2 31).

Output

For each case, output a n,m mod 10000007.

Sample Input

1 1
1
2 2
0 0
3 7
23 47 16

Sample Output

234
2799
72937

这个题的难点在于如何去构造矩阵,我们一般的构造矩阵是一维递推式,这个我们也可以通过改变一下就我们让第一行为23,最后一行为3,然后根据递推关系判断

如图:

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<vector>
#include<cmath>
const long long mod=10000007;

const int maxn=1e5+5;
typedef long long ll;
using namespace std;
int n,m;
struct mat
{
	ll a[15][15];
};

mat Mul(mat a,mat b)
{
	mat ans;
	memset(ans.a,0,sizeof(ans.a));
	for(int t=0;t<=n+1;t++)
	{
		for(int j=0;j<=n+1;j++)
		{
			for(int k=0;k<=n+1;k++)
			{
				ans.a[t][j]=(ans.a[t][j]+a.a[t][k]*b.a[k][j])%mod;
			}
		}
	}
	return ans;
}
mat anss;
ll quickPow(int k)
{
	mat res;
	memset(res.a,0,sizeof(res.a));
	for(int t=0;t<=n;t++)
	{
		res.a[t][0]=10;
	}
	for(int t=0;t<=n;t++)
	{
		for(int j=1;j<=t;j++)
		{
		   res.a[t][j]=1;
		}
		res.a[t][n+1]=1;
	}
	for(int t=0;t<=n;t++)
	{
		res.a[n+1][t]=0;
	}
	res.a[n+1][n+1]=1;
	while(k)
	{
	  	if(k&1)
	  	{
	  	 anss=Mul(res,anss);
	  	}
	  	res=Mul(res,res);
	  	k>>=1;
	}

	return anss.a[n][0]%mod;
}

int  main()
{
	

	while(cin>>n>>m)
	{
	   memset(anss.a,0,sizeof(anss.a));
	   anss.a[0][0]=23;
	   for(int t=1;t<=n;t++)
	   {
	   	scanf("%lld",&anss.a[t][0]);
	   }
	   anss.a[n+1][0]=3;
	   cout<<quickPow(m)<<endl;
	   
	   
	}
	return 0;
}