概率论中常见的等式与不等式;
标红的是我认为有难度的题目
不等式
- (茆1.4.32)设P(A)=p,P(B)=1−α>0 证明:
1−αp−α≤P(A∣B)≤1−αp
证明:
∵P(AB)≤P(A)=p1≥P(A∪B)=P(A)+P(B)−P(AB)⟹P(AB)≥P(A)+P(B)−1=p−α∴P(A∣B)=P(B)P(AB)∈[1−αp−α,1−αp]
- (张宇1000题114面){\color[RGB]{240, 0, 0} \text{对任意事件}A,B,P\left( A \right) P\left( B \right) \ge P\left( AB \right) P\left( A\cup B \right) }
证明:
P(A)=P(A∩(B∪Bˉ))=P(AB)+P(ABˉ)同理P(B)=P(AB)+P(AˉB)
故P(A)P(B)=(P(AB)+P(ABˉ))(P(AB)+P(AˉB))=P2(AB)+P(AB)P(AˉB)+P(AB)P(ABˉ)+P(AˉB)P(ABˉ)=P(AB)[P(AB)+P(AˉB)+P(ABˉ)]+P(AˉB)P(ABˉ)
\begin{align*}
&\because P\left( AB \right) +P\left( \bar{A}B \right) +P\left( A\bar{B} \right) =P\left( A \right) +P\left( B \right) -P\left( AB \right) =P\left( A\cup B \right)& \\
&P\left( \bar{A}B \right) P\left( A\bar{B} \right) \ge 0\\
&\therefore P\left( A \right) P\left( B \right) \\
&=P\left( AB \right) \left[ P\left( AB \right) +P\left( \bar{A}B \right) +P\left( A\bar{B} \right) \right] +P\left( \bar{A}B \right) P\left( A\bar{B} \right) \\
&\ge P\left( AB \right) P\left( A\cup B \right) +0\\
&=P\left( AB \right) P\left( A\cup B \right) \\
&\text{当且仅当}P\left( \bar{A}B \right) P\left( A\bar{B} \right) =0,\text{即}P\left( AB \right) =P\left( A \right) \text{或}P\left( B \right) \text{时等号成立}\\
&注:P\left( AB \right) =P\left( A \right) \text{或}P\left( B \right) {\color[RGB]{179, 0, 179} \text{推不出}\left( A\in B\text{或}B\in A \right) }
\end{align*}
- (茆1.3.19(1))对∀事件A,B,C.证明:P(AB)+P(AC)−P(BC)≤P(A)
证法1,从左往右证明:P(AB)+P(AC)−P(BC)≤P(AB)+P(AC)−P(ABC)=P(AB)+P(ACBˉ)≤P(AB)+P(ABˉ)=P(A)证法二:从右边往左证明:P(A)≥P(A∩(B∪C))=P(AB)+P(AC)−P(ABC)≥P(AB)+P(AC)−P(BC):
- (茆1.3.23){\color[RGB]{240, 0, 0} \text{对任意事件}A,B,\text{证明}:\left| P\left( AB \right) -P\left( A \right) P\left( B \right) \right|\le \frac{1}{4}}
\begin{align*}
&\text{证明}:\text{不妨设}P\left( A \right) \ge P\left( B \right)& \\
&\text{故}P\left( AB \right) -P\left( A \right) P\left( B \right) \le P\left( B \right) -P^2\left( B \right) \le \frac{1}{4}\\
&\text{另一方面}P\left( B \right) ={\color[RGB]{0, 0, 240} P\left( AB \right) +P\left( \bar{A}B \right) }\\
&P\left( AB \right) -P\left( A \right) P\left( B \right) \\
&=P\left( AB \right) -P\left( A \right) \left( {\color[RGB]{0, 0, 240} P\left( AB \right) +P\left( \bar{A}B \right) } \right) \\
&=P\left( AB \right) -P\left( A \right) P\left( AB \right) -P\left( A \right) {\color[RGB]{0, 0, 240} P\left( \bar{A}B \right) }\\
&{\color[RGB]{0, 0, 240} =}P\left( AB \right) \left( 1-P\left( A \right) \right) -P\left( A \right) {\color[RGB]{0, 0, 240} P\left( \bar{A}B \right) }\\
&{\color[RGB]{0, 0, 240} \ge }-P\left( A \right) {\color[RGB]{0, 0, 240} P\left( \bar{A}B \right) }\\
&{\color[RGB]{0, 0, 240} \ge }-P\left( A \right) {\color[RGB]{0, 0, 240} P\left( \bar{A} \right) }\\
&{\color[RGB]{0, 0, 240} =-P\left( A \right) \left( 1-P\left( A \right) \right) }\\
&{\color[RGB]{0, 0, 240} \ge -\frac{1}{4}}\\
&{\color[RGB]{0, 0, 240} \text{即}-}\frac{1}{4}{\color[RGB]{0, 0, 240} \le }P\left( AB \right) -P\left( A \right) P\left( B \right) \le \frac{1}{4},\text{即}\left| P\left( AB \right) -P\left( A \right) P\left( B \right) \right|\le \frac{1}{4}\\
&\text{若}P\left( A \right) \le P\left( B \right) ,\text{同理可得}\left| P\left( AB \right) -P\left( A \right) P\left( B \right) \right|\le \frac{1}{4}\\
&\text{综上可得}\left| P\left( AB \right) -P\left( A \right) P\left( B \right) \right|\le \frac{1}{4}
\end{align*}
-
(茆1.3.22)
-
P(AB)≥P(A)+P(B)−1
-
P(A1A2⋯An)≥i=1∑nAi−(n−1)
证明:
-
在第一题中已经给出证明过程
-
当n=2时显然P(AB)≥P(A)+P(B)−1成立设n=k时,P(A1A2⋯Ak)≥i=1∑kP(Ai)−(k−1)则当n=k+1时,记C=A1A2⋯Ak,P(C)=P(A1A2⋯Ak)≥i=1∑kP(Ai)−(k−1)
P(A1A2⋯Ak+1)=P(CAk+1)≥P(C)+P(Ak+1)−1≥i=1∑kP(Ai)−(k−1)+P(Ak+1)−1=i=1∑k+1P(Ai)−(k+1−1)
则由数学归纳法可知P(A1A2⋯An)≥i=1∑nAi−(n−1)
本文由mdnice多平台发布