Brief introduction of deep learning

27 阅读1分钟

History

  • 1958: Perceptron
  • 1980s: Multi-layer perceptron
    • Not significantly different from DNN today
  • 1986: Backpropagation
    • Usually not work with more than 3 hidden layers
  • 2006: RBM (Restricted Boltzmann machine) initialization
  • 2009: GPU
  • 2011: speech recognition
  • 2012: image recognition

Step 1: function set - neural network

Different connection leads to differnt network structures.

Given a network structure, define a function set (with unknown parameters: weight & bias).

  • connection, # layers, # neurons on each layer

Fully Connected Feedforward network (as an example)

image.png

  • examples image.png image.png

  • matrix operation -> can speed up using parallel computing techniques image.png image.png

  • design of network structure

    • 相较传统机器学习,难点从feature engineering变成了network structure design image.png

Step 2: goodness of a function

Same as multi-class classification image.png

image.png

Step 3: find the best function - gradient descent

image.png Toolkit for backpropagation: image.png

Why deep network

image.png