解析
handler 源码也算是老生常谈了,之前也简单研究过源码。首先列出比较重要的几个类
- Handler
- MessageQueue
- Message
- Looper
那么我们就从 Handler 最经典的用法开始分析
class MainActivity : AppCompatActivity() {
private val handler = object : Handler(Looper.getMainLooper()) {
override fun handleMessage(msg: Message) {
Toast.makeText(this@MainActivity, "处理消息", Toast.LENGTH_SHORT).show()
}
}
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
handler.sendEmptyMessage(0)
}
}
这里就有两个入口可以分析 Handler#sendMessage, Handler#handleMessage
Handler#sendMessage
// 具体实现看sendMessageDelay
public final boolean sendMessage(@NonNull Message msg) {
return sendMessageDelayed(msg, 0);
}
// 具体实现看 sendMessageAtTime
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
// 拿到字段里的 MessageQueue,然后 enqueueMessage
// 这个名字很容易猜到这是消息入队的操作
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis) {
// 将 msg 的 target 设置为 handler 自身,方便出队后拿到消息的发送者回调 handleMessage
msg.target = this;
// 设置 workSourceUid
msg.workSourceUid = ThreadLocalWorkSource.getUid();
// 在new Handler的时候可以设置为异步,这样这个handler发送的消息都是异步消息
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
然后我们就进入了 MessageQueue#enqueueMessage
MessageQueue#enqueueMessage
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
// 上锁,保证没有两条消息同时进行入队操作产生并发问题
synchronized (this) {
// 如果这个 messgae 正在队列中,当然不能再次入队
// 说一点小小的感悟吧,rust语言的移动语义可以让多次入队成为不可能,而在java中为了防范这种边界情况要写大量的检查代码。移动语义这个设计确实高明
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
// 如果这个线程正在退出,当然不能给一条死掉的线程上的handler发消息
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
// 标记这个消息正在使用
msg.markInUse();
// 设置这条信息应当从队列取出时的时间
msg.when = when;
// 拿到消息队列的头节点,没错,消息队列是一个链表结构
Message p = mMessages;
boolean needWake;
// 如果头节点为空 或者 when == 0 (意味着这个消息必须放置在头节点)或者 新插入的消息出队时间比头节点早
// 就将插入的消息设置为新的头节点
// 这里可以看出消息队列是一个优先队列
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
// 如果事件队列现在正处于等待状态就之后唤醒他 (其实就是唤醒epoll等待的事件线程)
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
// 在队列的中间插入。通常我们不会唤醒这个事件队列除非队列的头部有一个同步屏障
// 且这条消息是队列中最早的异步消息
// 正在阻塞 且 p.target == null 且 是异步消息
// 如果 p.target == null 则说明队列的头部是一条屏障消息
needWake = mBlocked && p.target == null && msg.isAsynchronous();
// 经典算法题,双指针遍历链表
Message prev;
for (;;) {
prev = p;
p = p.next;
// 遍历到尾部或遍历到了自己应该待的地方 break 出去
if (p == null || when < p.when) {
break;
}
// 如果触发这一行,说明这条消息不是最早的异步消息,那么就不需要唤醒了
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
// 插入
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
// 如果需要唤醒就调用 nativeWake 进到 native 层对事件循环进行唤醒
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
激动人心的 native 之旅就要启程啦~
private native static void nativeWake(long ptr);
native NativeMessageQueue#wake
前往 AOSPXRef 查看源码
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->wake();
}
void NativeMessageQueue::wake() {
mLooper->wake();
}
这里可以看出 java 层传入的 mPtr 其实就是 native 层的 MessageQueue 的指针。并且 wake 方法实际上是调用了 Looper#wake
void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ wake", this);
#endif
uint64_t inc = 1;
// TEMP_FAILURE_RETRY 这个宏用于在系统调用失败时重试
// 对 wakeEventFd 这个文件描述符写入唤醒信号 (1),epoll IO 多路复用机制便会唤醒线程
ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd.get(), &inc, sizeof(uint64_t)));
// 写入失败对应的异常处理
if (nWrite != sizeof(uint64_t)) {
if (errno != EAGAIN) {
LOG_ALWAYS_FATAL("Could not write wake signal to fd %d (returned %zd): %s", mWakeEventFd.get(), nWrite, strerror(errno));
}
}
}
可以看到我们向 mWakeEventFd 写入了唤醒信号,Looper 所对应线程上的 epoll 机制会停止等待唤醒信号,对线程进行唤醒。
我们知道 epoll 是需要事先注册文件描述符的,找出这部分代码,我们继续分析
void Looper::rebuildEpollLocked() {
// Close old epoll instance if we have one.
if (mEpollFd >= 0) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ rebuildEpollLocked - rebuilding epoll set", this);
#endif
mEpollFd.reset();
}
// Allocate the new epoll instance and register the WakeEventFd.
// 分配新的 epoll instance 并且注册 WakeEventFd
mEpollFd.reset(epoll_create1(EPOLL_CLOEXEC));
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
// 创建 epoll 事件 wakeEvent
epoll_event wakeEvent = createEpollEvent(EPOLLIN, WAKE_EVENT_FD_SEQ);
// 注册文件描述符
int result = epoll_ctl(mEpollFd.get(), EPOLL_CTL_ADD, mWakeEventFd.get(), &wakeEvent);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance: %s",
strerror(errno));
// 注册其他 epoll 事件:比如屏幕触摸事件,触摸屏幕时需要唤醒线程并在主线程回调 onTouch
for (const auto& [seq, request] : mRequests) {
epoll_event eventItem = createEpollEvent(request.getEpollEvents(), seq);
int epollResult = epoll_ctl(mEpollFd.get(), EPOLL_CTL_ADD, request.fd, &eventItem);
if (epollResult < 0) {
ALOGE("Error adding epoll events for fd %d while rebuilding epoll set: %s",
request.fd, strerror(errno));
}
}
}
注册了之后,问题是在哪里进行 epoll_wait 等待呢?在这里先按下不表,我们从 Handler#handleMessage 开始分析。
Handler#handleMessage
// Handler#dispatchMessage
public void dispatchMessage(@NonNull Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
Looper#loopOnce
// Looper#loopOnce
private static boolean loopOnce(final Looper me,
final long ident, final int thresholdOverride) {
// 重要步骤,从队列中取出消息
Message msg = me.mQueue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return false;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " "
+ msg.callback + ": " + msg.what);
}
// Make sure the observer won't change while processing a transaction.
// 这个 Observer 可以在消息处理前和消息处理后做一些事情
final Observer observer = sObserver;
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
Object token = null;
if (observer != null) {
token = observer.messageDispatchStarting();
}
long origWorkSource = ThreadLocalWorkSource.setUid(msg.workSourceUid);
try {
// 在这里把消息发给 Handler
msg.target.dispatchMessage(msg);
if (observer != null) {
observer.messageDispatched(token, msg);
}
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} catch (Exception exception) {
if (observer != null) {
observer.dispatchingThrewException(token, msg, exception);
}
throw exception;
} finally {
ThreadLocalWorkSource.restore(origWorkSource);
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (me.mSlowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
me.mSlowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
me.mSlowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
// 消息已经用完了,清除状态放入实例池
msg.recycleUnchecked();
return true;
}
别看上面一大堆代码,其实核心逻辑就是 MessageQueue#next 取出消息并把它分发给 Handler。其他的代码基本上就是单个消息处理太慢的警告机制。
Looper#loop
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
if (me.mInLoop) {
Slog.w(TAG, "Loop again would have the queued messages be executed"
+ " before this one completed.");
}
me.mInLoop = true;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
me.mSlowDeliveryDetected = false;
for (;;) {
if (!loopOnce(me, ident, thresholdOverride)) {
return;
}
}
}
重要代码也就是最后的死循环,这个死循环只会在 MessageQueue 正在退出的时候返回。
MessageQueue#next
重头戏来了
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
// 这里出现了 IdleHandler 的字眼
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
// pollOnce 其实就是一个设置了超时时间的 epoll_wait
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
// 消息队列的头部有同步屏障
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
// 找出队列中的首个异步消息
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
// 如果有消息
if (msg != null) {
// 这个消息还没有到时间,设置一下下轮循环执行的 pollOnce 的超时时间
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// 这个消息已经到时间了,从消息队列中取出返回
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// 队列空了,进入无限期的 epoll_wait 等待
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// 这里是 IdleHandler 相关的内容,先去看看 IdleHandler 这个东西怎么用
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
// 第一次空闲的时候,记录要运行的 idlehandler 的数量。
// 空闲处理只在队列为空或第一条消息需要等待一段时间的时候执行
// 说白了就是在 pollOnce 之前执行
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// 没有 IdleHandler 的情况下单次循环在这里结束
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
// 最大只会执行4个 IdleHandler
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
// 执行
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
// 不保留就删掉
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// 重制数量
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// 执行了idleHandler就不等待了,因为可能在idleHandler中已经发送了新的消息,重走一遍流程
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
native Looper#pollOnce
int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
int result = 0;
for (;;) {
while (mResponseIndex < mResponses.size()) {
const Response& response = mResponses.itemAt(mResponseIndex++);
int ident = response.request.ident;
if (ident >= 0) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning signalled identifier %d: "
"fd=%d, events=0x%x, data=%p",
this, ident, fd, events, data);
#endif
if (outFd != nullptr) *outFd = fd;
if (outEvents != nullptr) *outEvents = events;
if (outData != nullptr) *outData = data;
return ident;
}
}
// result != 0 时可以退出
if (result != 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - returning result %d", this, result);
#endif
if (outFd != nullptr) *outFd = 0;
if (outEvents != nullptr) *outEvents = 0;
if (outData != nullptr) *outData = nullptr;
return result;
}
// 这里如果返回0的话就要一直跑这个方法,不过我们知道pollInner实际上是不会返回的 (epoll_wait)
// 所以在这里猜测正常情况下返回就退出循环,只有在某些情况下需要重试?
result = pollInner(timeoutMillis);
}
}
接下来看看 pollInner,东西真多,我们只关注重点代码
int Looper::pollInner(int timeoutMillis) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis);
#endif
// Adjust the timeout based on when the next message is due.
if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
if (messageTimeoutMillis >= 0
&& (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
timeoutMillis = messageTimeoutMillis;
}
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - next message in %" PRId64 "ns, adjusted timeout: timeoutMillis=%d",
this, mNextMessageUptime - now, timeoutMillis);
#endif
}
// Poll.
// result的取值有四种: POLL_WAKE = -1 POLL_CALLBACK = -2 POLL_TIMEOUT = -3 POLL_ERROR = -4
int result = POLL_WAKE;
mResponses.clear();
mResponseIndex = 0;
// We are about to idle.
mPolling = true;
// 创建事件集合eventItems,EPOLL_MAX_EVENTS=16
struct epoll_event eventItems[EPOLL_MAX_EVENTS];
// 调用epoll_wait()来等待事件,如果有事件,就放入事件集合eventItems中,并返回事件数量,如果没有,就一直等,超时时间为我们传入的timeoutMillis
int eventCount = epoll_wait(mEpollFd.get(), eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
// No longer idling.
mPolling = false;
// Acquire lock.
// 加锁
mLock.lock();
// Rebuild epoll set if needed.
if (mEpollRebuildRequired) {
mEpollRebuildRequired = false;
rebuildEpollLocked();
goto Done;
}
// Check for poll error.
// 如果发生的事件小于0,说明 epoll_wait 出异常了,设置 result 为 POLL_ERROR 后跳转到 Done
if (eventCount < 0) {
if (errno == EINTR) {
goto Done;
}
ALOGW("Poll failed with an unexpected error: %s", strerror(errno));
result = POLL_ERROR;
goto Done;
}
// Check for poll timeout.
// epoll_wait 超时返回,跳转到 Done
if (eventCount == 0) {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - timeout", this);
#endif
result = POLL_TIMEOUT;
goto Done;
}
// Handle all events.
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);
#endif
// 走到这里说明有事件
for (int i = 0; i < eventCount; i++) {
// 挨个取出事件进行响应
const SequenceNumber seq = eventItems[i].data.u64;
uint32_t epollEvents = eventItems[i].events;
// 是 wake event
if (seq == WAKE_EVENT_FD_SEQ) {
if (epollEvents & EPOLLIN) {
// 清除 wakeEventFd 的事件循环计数器,以便接收下一次事件
// 事件文件描述符(如 eventfd)被设置为边缘触发(ET)模式。
// 这意味着只有在状态发生变化时,epoll 才会返回这个文件描述符的事件。
// 如果你不读取这个事件,状态就不会改变,所以 epoll 可能不会再次返回这个事件,即使有新的唤醒事件发生。
awoken();
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
}
} else {
// 响应其他事件
const auto& request_it = mRequests.find(seq);
if (request_it != mRequests.end()) {
const auto& request = request_it->second;
int events = 0;
if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
mResponses.push({.seq = seq, .events = events, .request = request});
} else {
ALOGW("Ignoring unexpected epoll events 0x%x for sequence number %" PRIu64
" that is no longer registered.",
epollEvents, seq);
}
}
}
Done: ;
// Invoke pending message callbacks.
// 这里就是处理 native 层的消息,跟 java 层 handler 的逻辑差不多
// native 层的消息是用 vector 存的
mNextMessageUptime = LLONG_MAX;
while (mMessageEnvelopes.size() != 0) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
// 消息到期
if (messageEnvelope.uptime <= now) {
// Remove the envelope from the list.
// We keep a strong reference to the handler until the call to handleMessage
// finishes. Then we drop it so that the handler can be deleted *before*
// we reacquire our lock.
{ // obtain handler
sp<MessageHandler> handler = messageEnvelope.handler;
Message message = messageEnvelope.message;
mMessageEnvelopes.removeAt(0);
mSendingMessage = true;
mLock.unlock();
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
this, handler.get(), message.what);
#endif
// 回调 native 层 handler 的 handleMessage
handler->handleMessage(message);
} // release handler
mLock.lock();
mSendingMessage = false;
// 这里 result 就是把message回调给了handler
result = POLL_CALLBACK;
} else {
// The last message left at the head of the queue determines the next wakeup time.
// 设置下条消息到期的时间 并跳出循环等待Java层的下一次轮询
mNextMessageUptime = messageEnvelope.uptime;
break;
}
}
// Release lock.
mLock.unlock();
// Invoke all response callbacks.
for (size_t i = 0; i < mResponses.size(); i++) {
Response& response = mResponses.editItemAt(i);
if (response.request.ident == POLL_CALLBACK) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
this, response.request.callback.get(), fd, events, data);
#endif
// Invoke the callback. Note that the file descriptor may be closed by
// the callback (and potentially even reused) before the function returns so
// we need to be a little careful when removing the file descriptor afterwards.
int callbackResult = response.request.callback->handleEvent(fd, events, data);
if (callbackResult == 0) {
AutoMutex _l(mLock);
removeSequenceNumberLocked(response.seq);
}
// Clear the callback reference in the response structure promptly because we
// will not clear the response vector itself until the next poll.
response.request.callback.clear();
result = POLL_CALLBACK;
}
}
return result;
}
总体流程其实就是 epoll_wait 拿到事件,处理事件并让 native 层的消息队列取一次消息。
面试题
来自蔷神
handler大致运转过程
Handler#sendMessage -> MessageQueue#enqueueMessage 消息入队 -> 如果消息入队时处于头部,或头部有同步屏障且插入的消息为最早的异步消息则唤醒 Looper NativeMessageQueue#wake
Looper 被唤醒后轮询取消息,取到消息后看消息是否过期,如果没有过期就 pollOnce 等待至过期,过期了就出队发给 Handler,直到没有更多消息时 pollOnce 的过期时间被设置为 -1,无限期等待直到有新消息插入。
handler消息类型以及每个类型的区别
同步消息,异步消息,同步屏障
同步消息屏障的意义是什么? 通常用来干嘛?
其实比较类似一些异步任务调度机制的任务偷取(好像内核态的任务调度也有偷取这个机制?)
在消息过多处理不过来的情况下优先处理异步消息,异步消息的异步其实指的就是不按消息队列中消息的顺序执行(毕竟在遇到屏障的时候只处理异步事件,不处理同步事件)
同步屏障用完要记得撤销,不然就再也接收不到同步消息了
如果我要发送handler消息,是直接new嘛? 为什么不这样?这样会造成什么影响?
那肯定不new,使用 Message.obtain 从对象池中拿取。如果发送消息都直接new的话会对堆内存造成较大负担,所以才有对象复用机制。
idlehandler是什么
idlehandler 就是在消息队列取空或下一个消息需要等待时即将进入 pollOnce 等待之前回调的一个接口。
public static interface IdleHandler {
// 返回 false 就会在回调一次后移除
// 返回 true 则会一直保留
boolean queueIdle();
}
idlehandler可以用来做哪一类任务
执行优先级足够低的任务
如果我频繁添加idlehandler是否发生anr
只要 idlehandler 中的处理没有耗时逻辑就不会,每次空闲执行的 idlehandler 不会超过4个。
looper的loop是死循环会造成anr嘛?为什么
不会,因为 loop 进去有消息的时候会处理消息,没有消息的时候会进入 epoll 等待,anr 的原因在于没有及时处理消息。
ANR 的原因
- 系统进程(system_server) 调度,设置定时监控(即埋下炸弹)
- system_server 进程将任务派发到应用进程完成对消息的实际处理(执行任务)
- 最后,执行任务时间过长,在定时器超时前 system_server 还未收到任务完成的通知,触发 ANR(炸弹爆炸)
没有及时处理 system_server 派发的任务,system_server 没有收到任务完成的通知,就触发了 ANR。
handler looper messagequeue是怎么个关系一对一还是一对多,多对多
Looper 跟 MessageQueue 是一对一的关系。MessageQueue 跟 Handler 是一对多的关系。
looper和thread是一对一的关系是如何实现的
使用 ThreadLocal 保存 Looper 实例
threadlocal是什么,有用过吗
ThreadLocal 本质上是保存在 Thread 上面的一张 HashMap,不同之处在与它的键使用 WeakReference 存储,在 set 时会清理 key == null 的键值对。但用完的时候最好手动 remove,不然还是会内存泄漏。使用弱引用只是让 ThreadLocalMap 持有的 ThreadLocal 不会内存泄漏,ThreadLocal 对应的值还是会内存泄漏。
messagequeue是什么数据结构
链表实现的优先队列
延迟消息是如何实现的
消息队列是一个优先队列,插入时进行排序。插入时如果消息处于头部,且事件队列处于等待状态就唤醒它,Looper 拿了头部的消息就会 pollOnce 等待这个消息需要等待的时间后再将消息出队传递给 Handler。如果有队列顶部有同步屏障的话,最早的异步消息将会进行唤醒处理。