js垃圾回收

120 阅读6分钟

概念

垃圾回收是一种自动的内存管理机制。当计算机上的动态内存不再需要时,就应该予以释放,以让出内存。直白点讲,就是程序是运行在内存里的,当声明一个变量、定义一个函数时都会占用内存。内存的容量是有限的,如果变量、函数等只有产生没有消亡的过程,那迟早内存有被完全占用的时候。这个时候,不仅自己的程序无法正常运行,连其他程序也会受到影响。好比生物只有出生没有死亡,地球总有被撑爆的一天。所以,在计算机中,我们需要垃圾回收。需要注意的是,定义中的“自动”的意思是语言可以帮助我们回收内存垃圾,但并不代表我们不用关心内存管理,如果操作失当,JavaScript 中依旧会出现内存溢出的情况。

垃圾回收基于两个原理:

  • 考虑某个变量或对象在未来的程序运行中将不会被访问
  • 向这些对象要求归还内存

而这两个原理中,最主要的也是最艰难的部分就是找到“所分配的内存确实已经不再需要了”。

垃圾回收方法

主要有两种方式:引用计数和标记清除。

引用计数(reference counting)

在内存管理环境中,对象 A 如果有访问对象 B 的权限,叫做对象 A 引用对象 B。引用计数的策略是将“对象是否不再需要”简化成“对象有没有其他对象引用到它”,如果没有对象引用这个对象,那么这个对象将会被回收。例子:

let obj1 = { a: 1 }; // 一个对象(称之为 A)被创建,赋值给 obj1,A 的引用个数为 1 
let obj2 = obj1; // A 的引用个数变为 2

obj1 = 0; // A 的引用个数变为 1
obj2 = 0; // A 的引用个数变为 0,此时对象 A 就可以被垃圾回收了

但是引用计数有个最大的问题: 循环引用。

function func() {
    let obj1 = {};
    let obj2 = {};

    obj1.a = obj2; // obj1 引用 obj2
    obj2.a = obj1; // obj2 引用 obj1
}

当函数 func 执行结束后,返回值为 undefined,所以整个函数以及内部的变量都应该被回收,但根据引用计数方法,obj1 和 obj2 的引用次数都不为 0,所以他们不会被回收。

要解决循环引用的问题,最好是在不使用它们的时候手工将它们设为空。上面的例子可以这么做:

obj1 = null;
obj2 = null;

标记-清除(mark and sweep)

这是 JavaScript 中最常见的垃圾回收方式。为什么说这是种最常见的方法,因为从 2012 年起,所有现代浏览器都使用了标记-清除的垃圾回收方法,除了低版本 IE...它们采用的是引用计数方法。

那什么叫标记清除呢?JavaScript 中有个全局对象,浏览器中是 window。定期的,垃圾回收期将从这个全局对象开始,找所有从这个全局对象开始引用的对象,再找这些对象引用的对象...对这些活着的对象进行标记,这是标记阶段。清除阶段就是清除那些没有被标记的对象。

标记-清除法的一个问题就是不那么有效率,因为在标记-清除阶段,整个程序将会等待,所以如果程序出现卡顿的情况,那有可能是收集垃圾的过程。

2012 年起,所有现代浏览器都使用了这个方法,所有的改进也都是基于这个方法,比如标记-整理方法。

标记清除有一个问题,就是在清除之后,内存空间是不连续的,即出现了内存碎片。如果后面需要一个比较大的连续的内存空间时,那将不能满足要求。而标记-整理方法可以有效地解决这个问题。标记阶段没有什么不同,只是标记结束后,标记-整理方法会将活着的对象向内存的一边移动,最后清理掉边界的内存。不过可以想象,这种做法的效率没有标记-清除高。计算机中的很多做法都是互相妥协的结果,哪有什么十全十美的事儿呢。

v8 垃圾回收机制

v8 的垃圾回收机制基于分代回收机制,这个机制又基于世代假说,这个假说有两个特点,一是新生的对象容易早死,另一个是不死的对象会活得更久。基于这个假说,v8 引擎将内存分为了新生代和老生代。

新创建的对象或者只经历过一次的垃圾回收的对象被称为新生代。经历过多次垃圾回收的对象被称为老生代。

新生代被分为 From 和 To 两个空间,To 一般是闲置的。当 From 空间满了的时候会执行 Scavenge 算法进行垃圾回收。当我们执行垃圾回收算法的时候应用逻辑将会停止,等垃圾回收结束后再继续执行。这个算法分为三步:

(1)首先检查 From 空间的存活对象,如果对象存活则判断对象是否满足晋升到老生代的条件,如果满足条件则晋升到老生代。如果不满足条件则移动 To 空间。

(2)如果对象不存活,则释放对象的空间。

(3)最后将 From 空间和 To 空间角色进行交换。

新生代对象晋升到老生代有两个条件:

(1)第一个是判断是对象否已经经过一次 Scavenge 回收。若经历过,则将对象从 From 空间复制到老生代中;若没有经历,则复制到 To 空间。

(2)第二个是 To 空间的内存使用占比是否超过限制。当对象从 From 空间复制到 To 空间时,若 To 空间使用超过 25%,则对象直接晋升到老生代中。设置 25% 的原因主要是因为算法结束后,两个空间结束后会交换位置,如果 To 空间的内存太小,会影响后续的内存分配。

老生代采用了标记清除法和标记压缩法。标记清除法首先会对内存中存活的对象进行标记,标记结束后清除掉那些没有标记的对象。由于标记清除后会造成很多的内存碎片,不便于后面的内存分配。所以了解决内存碎片的问题引入了标记压缩法。

由于在进行垃圾回收的时候会暂停应用的逻辑,对于新生代方法由于内存小,每次停顿的时间不会太长,但对于老生代来说每次垃圾回收的时间长,停顿会造成很大的影响。 为了解决这个问题 V8 引入了增量标记的方法,将一次停顿进行的过程分为了多步,每次执行完一小步就让运行逻辑执行一会,就这样交替运行。