1 前情提要
CREATE TABLE `t2` (
`id` int(11) NOT NULL,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `a` (`a`)
) ENGINE=InnoDB;
drop procedure idata;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=1;
while(i<=1000)do
insert into t2 values(i, i, i);
set i=i+1;
end while;
end;;
delimiter ;
call idata();
create table t1 like t2;
insert into t1 (select * from t2 where id<=100)
这两个表都有一个主键索引 id 和一个索引 a,字段 b 上无索引。存储过程 idata() 往表 t2 里插入了 1000 行数据,在表 t1 里插入的是 100 行数据。
2 Index Nested-Loop Join
2.1 示例代码
select * from t1 straight_join t2 on (t1.a=t2.a);
straight_join 让 MySQL 使用固定的连接方式执行查询,这样优化器只会按照我们指定的方式去 join。在这个语句里,t1 是驱动表,t2 是被驱动表。直接使用 join 语句,MySQL 优化器可能会选择表 t1 或 t2 作为驱动表。
2.2 explain
在这条语句里,被驱动表 t2 的字段 a 上有索引,join 过程用上了这个索引,因此这个语句的执行流程是这样的:
- 从表 t1 中读入一行数据 R;
- 从数据行 R 中,取出 a 字段到表 t2 里去查找;
- 取出表 t2 中满足条件的行,跟 R 组成一行,作为结果集的一部分; 重复执行步骤 1 到 3,直到表 t1 的末尾循环结束。
在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称 NLJ。它对应的流程图如下所示:
- 对驱动表 t1 做了全表扫描,这个过程需要扫描 100 行;
- 而对于每一行 R,根据 a 字段去表 t2 查找,走的是树搜索过程。由于我们构造的数据都是一一对应的,因此每次的搜索过程都只扫描一行,也是总共扫描 100 行;
- 所以,整个执行流程,总扫描行数是 200。
2.3 时间复杂度
假设被驱动表的行数是 M。每次在被驱动表查一行数据,要先搜索索引 a,再搜索主键索引。每次搜索一棵树近似复杂度是以 2 为底的 M 的对数,记为 log2M,所以在被驱动表上查一行的时间复杂度是 2 * log2M。
假设驱动表的行数是 N,执行过程就要扫描驱动表 N 行,然后对于每一行,到被驱动表上匹配一次。因此整个执行过程,近似复杂度是N + N*2*log2M。
【tips】
- 使用 join 语句,性能比强行拆成多个单表执行 SQL 语句的性能要好;
- 如果使用 join 语句的话,
需要让小表做驱动表。但是,你需要注意,这个结论的前提是“可以使用被驱动表的索引”。
2.4 算法优化
create table t1(id int primary key, a int, b int, index(a));
create table t2 like t1;
drop procedure idata;
delimiter ;;
create procedure idata()
begin
declare i int;
set i=1;
while(i<=1000)do
insert into t1 values(i, 1001-i, i);
set i=i+1;
end while;
set i=1;
while(i<=1000000)do
insert into t2 values(i, i, i);
set i=i+1;
end while;
end;;
delimiter ;
call idata();
表 t1 里,插入了 1000 行数据,每一行的 a=1001-id 的值。也就是说,表 t1 中字段 a 是逆序的。同时,在表 t2 中插入了 100 万行数据。
2.4.1 MRR
Multi-Range Read 优化 (MRR)。这个优化的主要目的是尽量使用顺序读盘。假设,我执行这个语句:
select * from t1 where a>=1 and a<=100;
主键索引是一棵 B+ 树,在这棵树上,每次只能根据一个主键 id 查到一行数据。因此,回表肯定是一行行搜索主键索引的,基本流程如下图所示。
因为大多数的数据都是按照主键递增顺序插入得到的,所以我们可以认为,如果按照主键的递增顺序查询的话,对磁盘的读比较接近顺序读,能够提升读性能。这,就是 MRR 优化的设计思路。此时,语句的执行流程变成了这样:
- 根据索引 a,定位到满足条件的记录,将 id 值放入
read_rnd_buffer中 ; - 将 read_rnd_buffer 中的 id 进行递增排序;
- 排序后的 id 数组,依次到主键 id 索引中查记录,并作为结果返回。
read_rnd_buffer 的大小是由 read_rnd_buffer_size 参数控制的。如果步骤 1 中,read_rnd_buffer 放满了,就会先执行完步骤 2 和 3,然后清空 read_rnd_buffer。之后继续找索引 a 的下个记录,并继续循环
启动MRR
如果你想要稳定地使用 MRR 优化的话,需要设置
set optimizer_switch="mrr_cost_based=off"
explain
MRR 能够提升性能的核心在于,这条查询语句在索引 a 上做的是一个范围查询(也就是说,这是一个多值查询),可以得到足够多的主键 id。这样通过排序以后,再去主键索引查数据,才能体现出“顺序性”的优势。
2.4.2 Batched Key Access
MySQL 在 5.6 版本后开始引入的 Batched Key Access(BKA) 算法了。这个 BKA 算法,其实就是对 NLJ 算法的优化。
NLJ算法的执行流程参照上文,有流程图。NLJ 算法执行的逻辑是:从驱动表 t1,一行行地取出 a 的值,再到被驱动表 t2 去做 join。也就是说,对于表 t2 来说,每次都是匹配一个值。这时,MRR 的优势就用不上了。为了使用MRR顺序读盘的优势,我们就把表 t1 的数据取出来一部分,先放到join_buffer。
图中,我在 join_buffer 中放入的数据是 P1-P100,表示的是只会取查询需要的字段。当然,如果 join buffer 放不下 P1-P100 的所有数据,就会把这 100 行数据分成多段执行上图的流程。
启用BKA
set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';
其中,前两个参数的作用是要启用 MRR。这么做的原因是,BKA 算法的优化要依赖于 MRR。
3 Simple Nested-Loop Join
select * from t1 straight_join t2 on (t1.a=t2.b);
由于表 t2 的字段 b 上没有索引,因此再用图 2 的执行流程时,每次到 t2 去匹配的时候,就要做一次全表扫描。这个 SQL 请求就要扫描表 t2 多达 100 次,总共扫描 100*1000=10 万行。这个算法看上去太“笨重”了。
3.1 Block Nested-Loop Join
3.1.1 简介
MySQL 也没有使用这个 Simple Nested-Loop Join 算法,而是使用了“Block Nested-Loop Join”的算法,简称 BNL。被驱动表上没有可用的索引,算法的流程是这样的:
- 把表 t1 的数据读入线程内存 join_buffer 中,由于我们这个语句中写的是 select *,因此是把整个表 t1 放入了内存;
- 扫描表 t2,把表 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回。
join_buffer 的大小是由参数 join_buffer_size 设定的,默认值是 256k。如果放不下表 t1 的所有数据话,策略很简单,就是分段放。
select * from t1 straight_join t2 on (t1.a=t2.b);
执行过程就变成了:
- 扫描表 t1,顺序读取数据行放入 join_buffer 中,放完第 88 行 join_buffer 满了,继续第 2 步;
- 扫描表 t2,把 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回;清空 join_buffer;
- 继续扫描表 t1,顺序读取最后的 12 行数据放入 join_buffer 中,继续执行第 2 步。
这个流程才体现出了这个算法名字中“Block”的由来,表示“分块去 join”。
3.1.2 explain
在这个过程中,对表 t1 和 t2 都做了一次全表扫描,因此总的扫描行数是 1100。由于 join_buffer 是以无序数组的方式组织的,因此对表 t2 中的每一行,都要做 100 次判断,总共需要在内存中做的判断次数是:100*1000=10 万次。
如果使用 Simple Nested-Loop Join 算法进行查询,扫描行数也是 10 万行。因此,从时间复杂度上来说,这两个算法是一样的。但是,Block Nested-Loop Join 算法的这 10 万次判断是内存操作,速度上会快很多,性能也更好。
3.1.3 时间复杂度
驱动表的数据行数是 N,需要分 K 段才能完成算法流程,被驱动表的数据行数是 M。注意,这里的 K 不是常数,N 越大 K 就会越大,因此把 K 表示为λ*N,显然λ的取值范围是 (0,1)。所以,在这个算法的执行过程中:
- 扫描行数是 N + λ * N* M;
- 内存判断 N * M 次。
N 越大,分段数 K 越大。那么,N 固定的时候,什么参数会影响 K 的大小呢?(也就是λ的大小)答案是 join_buffer_size。join_buffer_size 越大,一次可以放入的行越多,分成的段数也就越少,对被驱动表的全表扫描次数就越少。如果你的 join 语句很慢,就把 join_buffer_size 改大。
3.1.4 注意点
BNL 算法对系统的影响主要包括三个方面:
- 可能会多次扫描被驱动表,占用磁盘 IO 资源;
- 判断 join 条件需要执行 M*N 次对比(M、N 分别是两张表的行数),如果是大表就会占用非常多的 CPU 资源;
- 可能会导致 Buffer Pool 的热数据被淘汰,影响内存命中率。
关于影响三简单介绍一下:
如果一个使用 BNL 算法的 join 语句,多次扫描一个冷表,而且这个语句执行时间超过 1 秒,就会在再次扫描冷表的时候,把冷表的数据页移到 LRU 链表头部。如果冷表的数据表比较大就会占用大量的内存空间,影响缓存命中率。
4 总结
我们执行语句之前,需要通过理论分析和查看 explain 结果的方式,确认是否要使用 BNL 算法。如果确认优化器会使用 BNL 算法,就需要做优化。优化的常见做法是,给被驱动表的 join 字段加上索引,把 BNL 算法转成 BKA 算法。