一、介绍
1、进程和线程
A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。 B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。 C.一个进程可以创建和撤销多个线程;同一个进程中的多个线程之间可以并发执行。
2、并发和并行
A. 多线程程序在一个核的cpu上运行,就是并发。 B. 多线程程序在多个核的cpu上运行,就是并行。
3、协程和线程
协程:独立的栈空间,共享堆空间,调度由用户自己控制,本质上有点类似于用户级线程,这些用户级线程的调度也是自己实现的。 线程:一个线程上可以跑多个协程,协程是轻量级的线程。
oroutine 只是由官方实现的超级"线程池"。
每个实力4~5KB的栈内存占用和由于实现机制而大幅减少的创建和销毁开销是go高并发的根本原因。
并发不是并行:
并发主要由切换时间片来实现"同时"运行,并行则是直接利用多核实现多线程的运行,go可以设置使用核数,以发挥多核计算机的能力。
goroutine 奉行通过通信来共享内存,而不是共享内存来通信
二、Goroutine
Go语言中的goroutine就是这样一种机制,goroutine的概念类似于线程,但 goroutine是由Go的运行时(runtime)调度和管理的。Go程序会智能地将 goroutine 中的任务合理地分配给每个CPU。Go语言之所以被称为现代化的编程语言,就是因为它在语言层面已经内置了调度和上下文切换的机制。
Go语言中使用goroutine非常简单,只需要在调用函数的时候在前面加上go关键字,就可以为一个函数创建一个goroutine。
一个goroutine必定对应一个函数,可以创建多个goroutine去执行相同的函数。
func hello() {
fmt.Println("Hello Goroutine!")
}
func main() {
hello()
fmt.Println("main goroutine done!")
}
//
func main() {
go hello() // 启动另外一个goroutine去执行hello函数
fmt.Println("main goroutine done!")
time.Sleep(time.Second)
}
//启动多个goroutine
//使用了sync.WaitGroup来实现goroutine的同步
var wg sync.WaitGroup
func hello(i int) {
defer wg.Done() // goroutine结束就登记-1
fmt.Println("Hello Goroutine!", i)
}
func main() {
for i := 0; i < 10; i++ {
wg.Add(1) // 启动一个goroutine就登记+1
go hello(i)
}
wg.Wait() // 等待所有登记的goroutine都结束
}
//
package main
import (
"fmt"
"time"
)
func main() {
// 合起来写
go func() {
i := 0
for {
i++
fmt.Printf("new goroutine: i = %d\n", i)
time.Sleep(time.Second)
}
}()
i := 0
for {
i++
fmt.Printf("main goroutine: i = %d\n", i)
time.Sleep(time.Second)
if i == 2 {
break
}
}
}
//main goroutine: i = 1
//new goroutine: i = 1
//new goroutine: i = 2
//main goroutine: i = 2
3.runtime包
1、runtime.Gosched()
让出CPU时间片,重新等待安排任务(大概意思就是本来计划的好好的周末出去烧烤,但是你妈让你去相亲,两种情况第一就是你相亲速度非常快,见面就黄不耽误你继续烧烤,第二种情况就是你相亲速度特别慢,见面就是你侬我侬的,耽误了烧烤,但是还馋就是耽误了烧烤你还得去烧烤)
package main
import (
"fmt"
"runtime"
)
func main() {
go func(s string) {
for i := 0; i < 2; i++ {
fmt.Println(s)
}
}("world")
// 主协程
for i := 0; i < 2; i++ {
// 切一下,再次分配任务
runtime.Gosched()
fmt.Println("hello")
}
}
//能输出。主协程会交替执行两个任务,
//其中一个是启动一个新的 goroutine,另一个是打印 "hello"。
//使用 runtime.Gosched() 函数切换任务,确保 goroutine 和主协程能够交替执行。
//由于 goroutine 和主协程是并发执行的,因此输出的顺序可能会有所不同。
2、退出当前协程(一边烧烤一边相亲,突然发现相亲对象太丑影响烧烤,果断让她滚蛋,然后也就没有然后了)
package main
import (
"fmt"
"runtime"
)
func main() {
go func() {
defer fmt.Println("A.defer")
func() {
defer fmt.Println("B.defer")
// 结束协程
runtime.Goexit()
defer fmt.Println("C.defer")
fmt.Println("B")
}()
fmt.Println("A")
}()
for {
}
}
3、runtime.GOMAXPROCS
Go运行时的调度器使用GOMAXPROCS参数来确定需要使用多少个OS线程来同时执行Go代码。默认值是机器上的CPU核心数。例如在一个8核心的机器上,调度器会把Go代码同时调度到8个OS线程上(GOMAXPROCS是m:n调度中的n)。
Go语言中可以通过runtime.GOMAXPROCS()函数设置当前程序并发时占用的CPU逻辑核心数。
Go1.5版本之前,默认使用的是单核心执行。Go1.5版本之后,默认使用全部的CPU逻辑核心数。
我们可以通过将任务分配到不同的CPU逻辑核心上实现并行的效果
func a() {
for i := 1; i < 10; i++ {
fmt.Println("A:", i)
}
}
func b() {
for i := 1; i < 10; i++ {
fmt.Println("B:", i)
}
}
func main() {
runtime.GOMAXPROCS(1)
go a()
go b()
time.Sleep(time.Second)
}
//两个任务只有一个逻辑核心,此时是做完一个任务再做另一个任务
//将逻辑核心数设为2,此时两个任务并行执行
func a() {
for i := 1; i < 10; i++ {
fmt.Println("A:", i)
}
}
func b() {
for i := 1; i < 10; i++ {
fmt.Println("B:", i)
}
}
func main() {
runtime.GOMAXPROCS(2)
go a()
go b()
time.Sleep(time.Second)
}
⚠️:
Go语言中的操作系统线程和goroutine的关系:
- 1.一个操作系统线程对应用户态多个goroutine。
- 2.go程序可以同时使用多个操作系统线程。
- 3.goroutine和OS线程是多对多的关系,即m:n。
4、Channel
Go语言的并发模型是CSP(Communicating Sequential Processes),提倡通过通信共享内存而不是通过共享内存而实现通信。
如果说goroutine是Go程序并发的执行体,channel就是它们之间的连接。channel是可以让一个goroutine发送特定值到另一个goroutine的通信机制。
Go 语言中的通道(channel)是一种特殊的类型。通道像一个传送带或者队列,总是遵循先入先出(First In First Out)的规则,保证收发数据的顺序。每一个通道都是一个具体类型的导管,也就是声明channel的时候需要为其指定元素类型。
1、channel类型
var 变量 chan 元素类型
var ch1 chan int // 声明一个传递整型的通道
var ch2 chan bool // 声明一个传递布尔型的通道
var ch3 chan []int // 声明一个传递int切片的通道
2、创建channel
//通道是引用类型,通道类型的空值是nil。
var ch chan int
fmt.Println(ch) // <nil>
//声明的通道后需要使用make函数初始化之后才能使用
make(chan 元素类型, [缓冲大小])
ch4 := make(chan int)
ch5 := make(chan bool)
ch6 := make(chan []int)
3、channel操作
发送(send)、接收(receive)和关闭(close)
1.对一个关闭的通道再发送值就会导致panic。
2.对一个关闭的通道进行接收会一直获取值直到通道为空。
3.对一个关闭的并且没有值的通道执行接收操作会得到对应类型的零值。
4.关闭一个已经关闭的通道会导致panic。
4、无缓冲Channel
func recv(c chan int) {
ret := <-c
fmt.Println("接收成功", ret)
}
func main() {
ch := make(chan int)
go recv(ch) // 启用goroutine从通道接收值
ch <- 10
fmt.Println("发送成功")
}
//如果不启用一个goroutine去接收值,那么会报错
5、有缓冲Channel
func main() {
ch := make(chan int, 1) // 创建一个容量为1的有缓冲区通道
ch <- 10
fmt.Println("发送成功")
}
6、Close
可以通过内置的close()函数关闭channel(如果你的管道不往里存值或者取值的时候一定记得关闭管道)
package main
import "fmt"
func main() {
c := make(chan int)
go func() {
for i := 0; i < 5; i++ {
c <- i
}
close(c)
}()
for {
if data, ok := <-c; ok {
fmt.Println(data)
} else {
break
}
}
fmt.Println("main结束")
}
7、从从通道循环取值
有两种方式在接收值的时候判断通道是否被关闭,我们通常使用的是for range的方式
8、单向通道
func counter(out chan<- int) {
for i := 0; i < 100; i++ {
out <- i
}
close(out)
}
func squarer(out chan<- int, in <-chan int) {
for i := range in {
out <- i * i
}
close(out)
}
func printer(in <-chan int) {
for i := range in {
fmt.Println(i)
}
}
func main() {
ch1 := make(chan int)
ch2 := make(chan int)
go counter(ch1)
go squarer(ch2, ch1)
printer(ch2)
}
//1. chan<- int是一个只能发送的通道,可以发送但是不能接收;
//2. <-chan int是一个只能接收的通道,可以接收但是不能发送。
5、Goroutine池
worker pool(goroutine池)
-
本质上是生产者消费者模型
-
可以有效控制goroutine数量,防止暴涨
-
需求:
- 计算一个数字的各个位数之和,例如数字123,结果为1+2+3=6
- 随机生成数字进行计算
-
控制台输出结果如下:
package main
import (
"fmt"
"math/rand"
)
type Job struct {
// id
Id int
// 需要计算的随机数
RandNum int
}
type Result struct {
// 这里必须传对象实例
job *Job
// 求和
sum int
}
func main() {
// 需要2个管道
// 1.job管道
jobChan := make(chan *Job, 128)
// 2.结果管道
resultChan := make(chan *Result, 128)
// 3.创建工作池
createPool(64, jobChan, resultChan)
// 4.开个打印的协程
go func(resultChan chan *Result) {
// 遍历结果管道打印
for result := range resultChan {
fmt.Printf("job id:%v randnum:%v result:%d\n", result.job.Id,
result.job.RandNum, result.sum)
}
}(resultChan)
var id int
// 循环创建job,输入到管道
for {
id++
// 生成随机数
r_num := rand.Int()
job := &Job{
Id: id,
RandNum: r_num,
}
jobChan <- job
}
}
// 创建工作池
// 参数1:开几个协程
func createPool(num int, jobChan chan *Job, resultChan chan *Result) {
// 根据开协程个数,去跑运行
for i := 0; i < num; i++ {
go func(jobChan chan *Job, resultChan chan *Result) {
// 执行运算
// 遍历job管道所有数据,进行相加
for job := range jobChan {
// 随机数接过来
r_num := job.RandNum
// 随机数每一位相加
// 定义返回值
var sum int
for r_num != 0 {
tmp := r_num % 10
sum += tmp
r_num /= 10
}
// 想要的结果是Result
r := &Result{
job: job,
sum: sum,
}
//运算结果扔到管道
resultChan <- r
}
}(jobChan, resultChan)
}
}
6、定时器
1、• Timer:时间到了,执行只执行1次
package main
import (
"fmt"
"time"
)
func main() {
// 1.timer基本使用
//timer1 := time.NewTimer(2 * time.Second)
//t1 := time.Now()
//fmt.Printf("t1:%v\n", t1)
//t2 := <-timer1.C
//fmt.Printf("t2:%v\n", t2)
// 2.验证timer只能响应1次
//timer2 := time.NewTimer(time.Second)
//for {
// <-timer2.C
// fmt.Println("时间到")
//}
// 3.timer实现延时的功能
//(1)
//time.Sleep(time.Second)
//(2)
//timer3 := time.NewTimer(2 * time.Second)
//<-timer3.C
//fmt.Println("2秒到")
//(3)
//<-time.After(2*time.Second)
//fmt.Println("2秒到")
// 4.停止定时器
//timer4 := time.NewTimer(2 * time.Second)
//go func() {
// <-timer4.C
// fmt.Println("定时器执行了")
//}()
//b := timer4.Stop()
//if b {
// fmt.Println("timer4已经关闭")
//}
// 5.重置定时器
timer5 := time.NewTimer(3 * time.Second)
timer5.Reset(1 * time.Second)
fmt.Println(time.Now())
fmt.Println(<-timer5.C)
for {
}
}
2、• Ticker:时间到了,多次执行
package main
import (
"fmt"
"time"
)
func main() {
// 1.获取ticker对象
ticker := time.NewTicker(1 * time.Second)
i := 0
// 子协程
go func() {
for {
//<-ticker.C
i++
fmt.Println(<-ticker.C)
if i == 5 {
//停止
ticker.Stop()
}
}
}()
for {
}
}
7、select
select的使用类似于switch语句,它有一系列case分支和一个默认的分支。每个case会对应一个通道的通信(接收或发送)过程。select会一直等待,直到某个case的通信操作完成时,就会执行case分支对应的语句。
select {
case <-chan1:
// 如果chan1成功读到数据,则进行该case处理语句
case chan2 <- 1:
// 如果成功向chan2写入数据,则进行该case处理语句
default:
// 如果上面都没有成功,则进入default处理流程
}
//select可以同时监听一个或多个channel,直到其中一个channel ready
package main
import (
"fmt"
"time"
)
func test1(ch chan string) {
time.Sleep(time.Second * 5)
ch <- "test1"
}
func test2(ch chan string) {
time.Sleep(time.Second * 2)
ch <- "test2"
}
func main() {
// 2个管道
output1 := make(chan string)
output2 := make(chan string)
// 跑2个子协程,写数据
go test1(output1)
go test2(output2)
// 用select监控
select {
case s1 := <-output1:
fmt.Println("s1=", s1)
case s2 := <-output2:
fmt.Println("s2=", s2)
}
}
//如果多个channel同时ready,则随机选择一个执行
package main
import (
"fmt"
)
func main() {
// 创建2个管道
int_chan := make(chan int, 1)
string_chan := make(chan string, 1)
go func() {
//time.Sleep(2 * time.Second)
int_chan <- 1
}()
go func() {
string_chan <- "hello"
}()
select {
case value := <-int_chan:
fmt.Println("int:", value)
case value := <-string_chan:
fmt.Println("string:", value)
}
fmt.Println("main结束")
}
//可以用于判断管道是否存满
package main
import (
"fmt"
"time"
)
// 判断管道有没有存满
func main() {
// 创建管道
output1 := make(chan string, 10)
// 子协程写数据
go write(output1)
// 取数据
for s := range output1 {
fmt.Println("res:", s)
time.Sleep(time.Second)
}
}
func write(ch chan string) {
for {
select {
// 写数据
case ch <- "hello":
fmt.Println("write hello")
default:
fmt.Println("channel full")
}
time.Sleep(time.Millisecond * 500)
}
}
8、并发安全和锁
var x int64
var wg sync.WaitGroup
func add() {
for i := 0; i < 5000; i++ {
x = x + 1
}
wg.Done()
}
func main() {
wg.Add(2)
go add()
go add()
wg.Wait()
fmt.Println(x)
}
//两个goroutine去累加变量x的值,这两个goroutine在访问和修改x变量的时候就会存在数据竞争,
//导致最后的结果与期待的不符
1、互斥锁是一种常用的控制共享资源访问的方法,它能够保证同时只有一个goroutine可以访问共享资源。Go语言中使用sync包的Mutex类型来实现互斥锁
var x int64
var wg sync.WaitGroup
var lock sync.Mutex
func add() {
for i := 0; i < 5000; i++ {
lock.Lock() // 加锁
x = x + 1
lock.Unlock() // 解锁
}
wg.Done()
}
func main() {
wg.Add(2)
go add()
go add()
wg.Wait()
fmt.Println(x)
}
//使用互斥锁能够保证同一时间有且只有一个goroutine进入临界区,其他的goroutine则在等待锁;
//当互斥锁释放后,等待的goroutine才可以获取锁进入临界区,多个goroutine同时等待一个锁时,
//唤醒的策略是随机的。
2、读写互斥锁
读写锁分为两种:读锁和写锁。当一个goroutine获取读锁之后,其他的goroutine如果是获取读锁会继续获得锁,如果是获取写锁就会等待;当一个goroutine获取写锁之后,其他的goroutine无论是获取读锁还是写锁都会等待。
var (
x int64
wg sync.WaitGroup
lock sync.Mutex
rwlock sync.RWMutex
)
func write() {
// lock.Lock() // 加互斥锁
rwlock.Lock() // 加写锁
x = x + 1
time.Sleep(10 * time.Millisecond) // 假设读操作耗时10毫秒
rwlock.Unlock() // 解写锁
// lock.Unlock() // 解互斥锁
wg.Done()
}
func read() {
// lock.Lock() // 加互斥锁
rwlock.RLock() // 加读锁
time.Sleep(time.Millisecond) // 假设读操作耗时1毫秒
rwlock.RUnlock() // 解读锁
// lock.Unlock() // 解互斥锁
wg.Done()
}
func main() {
start := time.Now()
for i := 0; i < 10; i++ {
wg.Add(1)
go write()
}
for i := 0; i < 1000; i++ {
wg.Add(1)
go read()
}
wg.Wait()
end := time.Now()
fmt.Println(end.Sub(start))
}
//写锁非常适合读多写少的场景,如果读和写的操作差别不大,读写锁的优势就发挥不出来
9、Sync
sync.WaitGroup内部维护着一个计数器,计数器的值可以增加和减少。例如当我们启动了N 个并发任务时,就将计数器值增加N。每个任务完成时通过调用Done()方法将计数器减1。通过调用Wait()来等待并发任务执行完,当计数器值为0时,表示所有并发任务已经完成。
var wg sync.WaitGroup
func hello() {
defer wg.Done()
fmt.Println("Hello Goroutine!")
}
func main() {
wg.Add(1)
go hello() // 启动另外一个goroutine去执行hello函数
fmt.Println("main goroutine done!")
wg.Wait()
}//sync.WaitGroup是一个结构体,传递的时候要传递指针
.1.2. sync.Once
说在前面的话:这是一个进阶知识点。
在编程的很多场景下我们需要确保某些操作在高并发的场景下只执行一次,例如只加载一次配置文件、只关闭一次通道等。
Go语言中的sync包中提供了一个针对只执行一次场景的解决方案–sync.Once。
sync.Once只有一个Do方法,其签名如下:
func (o *Once) Do(f func()) {}
注意:如果要执行的函数f需要传递参数就需要搭配闭包来使用。
加载配置文件示例
延迟一个开销很大的初始化操作到真正用到它的时候再执行是一个很好的实践。因为预先初始化一个变量(比如在init函数中完成初始化)会增加程序的启动耗时,而且有可能实际执行过程中这个变量没有用上,那么这个初始化操作就不是必须要做的。我们来看一个例子:
var icons map[string]image.Image
func loadIcons() {
icons = map[string]image.Image{
"left": loadIcon("left.png"),
"up": loadIcon("up.png"),
"right": loadIcon("right.png"),
"down": loadIcon("down.png"),
}
}
// Icon 被多个goroutine调用时不是并发安全的
func Icon(name string) image.Image {
if icons == nil {
loadIcons()
}
return icons[name]
}
多个goroutine并发调用Icon函数时不是并发安全的,现代的编译器和CPU可能会在保证每个goroutine都满足串行一致的基础上自由地重排访问内存的顺序。loadIcons函数可能会被重排为以下结果:
func loadIcons() {
icons = make(map[string]image.Image)
icons["left"] = loadIcon("left.png")
icons["up"] = loadIcon("up.png")
icons["right"] = loadIcon("right.png")
icons["down"] = loadIcon("down.png")
}
在这种情况下就会出现即使判断了icons不是nil也不意味着变量初始化完成了。考虑到这种情况,我们能想到的办法就是添加互斥锁,保证初始化icons的时候不会被其他的goroutine操作,但是这样做又会引发性能问题。
使用sync.Once改造的示例代码如下:
var icons map[string]image.Image
var loadIconsOnce sync.Once
func loadIcons() {
icons = map[string]image.Image{
"left": loadIcon("left.png"),
"up": loadIcon("up.png"),
"right": loadIcon("right.png"),
"down": loadIcon("down.png"),
}
}
// Icon 是并发安全的
func Icon(name string) image.Image {
loadIconsOnce.Do(loadIcons)
return icons[name]
}
sync.Once其实内部包含一个互斥锁和一个布尔值,互斥锁保证布尔值和数据的安全,而布尔值用来记录初始化是否完成。这样设计就能保证初始化操作的时候是并发安全的并且初始化操作也不会被执行多次。
1.1.3. sync.Map
Go语言中内置的map不是并发安全的。请看下面的示例:
var m = make(map[string]int)
func get(key string) int {
return m[key]
}
func set(key string, value int) {
m[key] = value
}
func main() {
wg := sync.WaitGroup{}
for i := 0; i < 20; i++ {
wg.Add(1)
go func(n int) {
key := strconv.Itoa(n)
set(key, n)
fmt.Printf("k=:%v,v:=%v\n", key, get(key))
wg.Done()
}(i)
}
wg.Wait()
}
上面的代码开启少量几个goroutine的时候可能没什么问题,当并发多了之后执行上面的代码就会报fatal error: concurrent map writes错误。
像这种场景下就需要为map加锁来保证并发的安全性了,Go语言的sync包中提供了一个开箱即用的并发安全版map–sync.Map。开箱即用表示不用像内置的map一样使用make函数初始化就能直接使用。同时sync.Map内置了诸如Store、Load、LoadOrStore、Delete、Range等操作方法。
var m = sync.Map{}
func main() {
wg := sync.WaitGroup{}
for i := 0; i < 20; i++ {
wg.Add(1)
go func(n int) {
key := strconv.Itoa(n)
m.Store(key, n)
value, _ := m.Load(key)
fmt.Printf("k=:%v,v:=%v\n", key, value)
wg.Done()
}(i)
}
wg.Wait()
10、原子操作(atomic包)
原子操作
代码中的加锁操作因为涉及内核态的上下文切换会比较耗时、代价比较高。针对基本数据类型我们还可以使用原子操作来保证并发安全,因为原子操作是Go语言提供的方法它在用户态就可以完成,因此性能比加锁操作更好。Go语言中原子操作由内置的标准库sync/atomic提供。
atomic包提供了底层的原子级内存操作,对于同步算法的实现很有用。这些函数必须谨慎地保证正确使用。除了某些特殊的底层应用,使用通道或者sync包的函数/类型实现同步更好。
var x int64
var l sync.Mutex
var wg sync.WaitGroup
// 普通版加函数
func add() {
// x = x + 1
x++ // 等价于上面的操作
wg.Done()
}
// 互斥锁版加函数
func mutexAdd() {
l.Lock()
x++
l.Unlock()
wg.Done()
}
// 原子操作版加函数
func atomicAdd() {
atomic.AddInt64(&x, 1)
wg.Done()
}
func main() {
start := time.Now()
for i := 0; i < 10000; i++ {
wg.Add(1)
// go add() // 普通版add函数 不是并发安全的
// go mutexAdd() // 加锁版add函数 是并发安全的,但是加锁性能开销大
go atomicAdd() // 原子操作版add函数 是并发安全,性能优于加锁版
}
wg.Wait()
end := time.Now()
fmt.Println(x)
fmt.Println(end.Sub(start))
}