近日,作为三年级fw,参加了计算机能力测试,结果令人羞愧。某非计算机人士特此连夜观摩了线性代数和矩阵编写。痛哭涕泠(T_T),不以言表。
由个数 排成的行列的矩形数表:
称为一个矩阵.这个数称为该矩阵的元素, 其中元素位于该矩阵的第行、第列,称为该矩阵的元.
package matrix
import (
"math"
)
type SQ struct {
//矩阵结构
N, M int // m是列数,n是行数
Data [][]float64
}
// 矩阵定义
func (this *SQ) Set(m int, n int, data []float64) {
// m是列数,n是行数,data是矩阵数据(由左到右由上到下填充)
this.M = m
this.N = n
if len(data) != this.M * this.N {
// 矩阵定义失败
return
}
else
{
k := 0
if this.M * this.N == len(data) {
for i := 0; i < this.N; ++i {
var tmpArr []float64
for j := 0; j < this.M; ++j {
tmpArr = append(tmpArr, data\[k])
++k
}
this.Data = append(this.Data, tmpArr)
}
}
else
{
// ("矩阵定义失败")
return
}
}
}
// a的列数和b的行数相等
// 矩阵乘法
func Mul(a SQ, b SQ) [][]float64 {
if a.M == b.N {
res := [][]float64{}
// 以A行乘以B列
for i := 0; i < a.N; ++i {
t := []float64{}
// a.data[i] 是第 i+1 行
for j := 0; j < b.M; ++j {
r := []float64(0)
for k := 0; k < a.M; ++k {
r += a.Data[i][k] * b.Data[k][j]
}
t = append(t, r)
}
res = append(res, t)
}
return res
}
else
{
// 两矩阵无法进行相乘运算
return [][]float64{}
}
}
// 矩阵转置
func Transpose(a SQ) SQ {
var b SQ
b.M = a.N
b.N = a.M
var res = [][]float64{}
for i := 0; i < a.M; ++i {
var t = []float64{}
for j := 0; j < a.N; ++j {
t = append(t, a.Data[j][i])
}
res = append(res, t)
}
b.Data = res
return b
}
// 计算n阶行列式 (N = n - 1)
func Det(Matrix [][]float64, N int) float64 {
var T0, T1, T2, Cha int
var Num float64
var B [][]float64
if N > 0 {
Cha = 0
for i := 0; i < N; ++i {
var tmpArr []float64
for j := 0; j < N; ++j {
tmpArr = append(tmpArr, 0)
}
B = append(B, tmpArr)
}
Num = 0
for T0 = 0; T0 <= N; ++T0 {
for T1 = 1; T1 <= N; ++T1 {
for T2 = 0; T2 <= N - 1; ++T2 {
if T2 == T0 {
Cha = 1
}
B[T1 - 1][T2] = Matrix[T1][T2 + Cha]
} // T2循环
Cha = 0
} // T1 循环
Num = Num + Matrix[0][T0] * Det(B, N - 1) * math.Pow(-1, float64(T0))
} // T0 循环
return Num
}
else if N == 0 {
return Matrix[0][0]
}
return 0
}
// 矩阵求逆 (N = n - 1)
func Inverse(S1 SQ) (MatrixC [][]float64) {
N := S1.N -1
Matrix := S1.Data
var T0, T1, T2, T3 int
var B [][]float64
for i := 0; i < N; ++i {
var tmpArr []float64
for j := 0; j < N; ++j {
tmpArr = append(tmpArr, 0)
}
B = append(B, tmpArr)
}
for i := 0; i < N + 1; ++i {
var tmpArr []float64
for j := 0; j < N + 1; ++j {
tmpArr = append(tmpArr, 0)
}
MatrixC = append(MatrixC, tmpArr)
}
Chay := 0
Chax := 0
var add float64
add = 1 / Det(Matrix, N)
for T0 = 0; T0 <= N; ++T0 {
for T3 = 0; T3 <= N; ++T3 {
for T1 = 0; T1 <= N - 1; ++T1 {
if T1 < T0 {
Chax = 0
}
else
{
Chax = 1
}
for T2 = 0; T2 <= N - 1; ++T2 {
if T2 < T3 {
Chay = 0
}
else
{
Chay = 1
}
B[T1][T2] = Matrix[T1 + Chax][T2 + Chay]
} // T2 循环
} // T1 循环
Det(B, N - 1)
MatrixC[T3][T0] = Det(B, N - 1) * add * (math.Pow(-1, float64(T0 + T3)))
}
return MatrixC
}
//
// Created by Xmx on 2022/7/26.
//
#include <iostream>
#include <cmath>
#include <fstream>
#include <initializer_list>
using namespace std;
template <class T>
class Matrix
{
public:
// 无参构造函数
Matrix() {}
// 有参构造函数
Matrix(int rows, int cols, T init_value)
{
set_rows(rows);
set_cols(cols);
new_mat();
for (int i = 0; i < get_rows(); ++i)
for (int j = 0; j < get_cols(); ++j)
mat_[i][j] = init_value;
}
// 析构函数
~Matrix()
{
cout << "~Matrix" << endl;
delete_mat();
}
// done:
// 有参构造函数, 使用初始化列表
Matrix(initializer_list<initializer_list<T>> listList)
{
rows_ = (listList.begin())->size();
cols_ = listList.size();
new_mat(); // 分配内存
auto pr = listList.begin();
auto pc = pr->begin();
for (int i = 0; i < get_rows(); i++, pr++)
{
pc = pr->begin();
for (int j = 0; j < get_cols(); j++, pc++)
mat_[i][j] = *pc;
}
}
// 重载拷贝构造函数, 实现深拷贝
Matrix<T>(const Matrix<T> &matrix)
{
this->rows_ = matrix.get_rows();
this->cols_ = matrix.get_cols();
new_mat(); // 为拷贝接受对象开辟内存
//拷贝数值
for (int i = 0; i < matrix.get_rows(); ++i)
for (int j = 0; j < matrix.get_cols(); ++j)
mat_[i][j] = matrix.mat_[i][j];
}
//! 重载= 必须通过成员函数实现
Matrix<T> &operator=(const Matrix<T> &matrix)
{
// 若其在堆区, 先释放mat_指针,再深拷贝即可
if (mat_ != NULL)
{
delete mat_;
mat_ = NULL;
}
// 深拷贝
this->rows_ = matrix.get_rows();
this->cols_ = matrix.get_cols();
new_mat();
for (int i = 0; i < matrix.get_rows(); ++i)
for (int j = 0; j < matrix.get_cols(); ++j)
mat_[i][j] = matrix.mat_[i][j];
return *this;
}
bool operator==(const Matrix<T> &other)
{
if (this->rows_ == other.rows_ && this->cols_ == other.cols_)
{
if (this->mat_ != NULL && other.mat_ != NULL)
{
for (int i = 0; i < this->rows_; i++)
for (int j = 0; j < this->cols_; j++)
if (this->mat_[i][j] != other.mat_[i][j])
return false;
return true;
}
else
return false;
}
else
return false;
}
bool operator!=(const Matrix<T> &other)
{
if (this->rows_ == other.rows_ && this->cols_ == other.cols_)
{
if (this->mat_ != NULL && other.mat_ != NULL)
{
for (int i = 0; i < this->rows_; i++)
for (int j = 0; j < this->cols_; j++)
if (mat_[i][j] != other.mat_[i][j])
return true;
return true;
}
else
return true;
}
else
return true;
}
// 申请矩阵空间
void new_mat()
{
this->mat_ = new T *[get_rows()];
for (int i = 0; i < get_rows(); i++)
{
this->mat_[i] = new T[get_cols()];
}
}
// 释放矩阵空间
void delete_mat()
{
if (mat_ != NULL)
{
for (int i = 0; i < get_rows(); i++)
delete[] this->mat_[i];
delete[] mat_;
mat_ = NULL;
}
}
// * ------------------------- 访问器与修改器 ---------------------------- *
void set_rows(int rows)
{
this->rows_ = rows;
}
void set_cols(int cols)
{
this->cols_ = cols;
}
int get_rows() const
{
return this->rows_;
}
int get_cols() const
{
return this->cols_;
}
//* --------------------------- 文件和流 -------------------------------- *
void load_matrix(string filename)
{
ifstream input;
// input>>noskipws; //! 不忽略空格, 为了方便写入矩阵,不跳过空格
input.open(filename);
string read_contents = "";
string temp;
//! 读写模板
// while (input>>temp)
// {
// /* code */
// read_contents += temp;
// }
// cout << read_contents << endl;
if (input.is_open())
{
int rows, cols;
input >> rows >> cols;
set_rows(rows);
set_cols(cols);
new_mat();
for (int i = 0; i < get_rows(); i++)
for (int j = 0; j < get_cols(); j++)
input >> mat_[i][j];
cout << "read the txt successfully" << endl;
cout << "rows: " << rows << " cols: " << cols << endl;
input.close();
cout << "The Matrix has been read successfully: " << endl;
cout << *this << endl;
}
else
cout << "File Opening Failed" << endl;
}
void write_matrix(string filename)
{
ofstream output(filename);
if (output.is_open())
{
output << *this << endl;
output.close();
cout << "Matrix has been written" << endl;
}
else
cout << "File Opening Failed" << endl;
}
// void show_mat()
// {
// cout << endl;
// for (int i = 0; i < get_rows(); i++)
// {
// for (int j = 0; j < get_cols(); j++)
// {
// cout << this->mat_[i][j] << " ";
// }
// cout << endl;
// }
// cout << endl;
// }
// * ------------------------ 矩阵的基本运算函数 -------------------------- *
void swap_element(T &element1, T &element2)
{
T temp = element1;
element1 = element2;
element2 = temp;
}
// 交换两行
void swap_rows(int row1, int row2)
{
for (int i = 0; i < get_cols(); i++)
swap_element(mat_[row1][i], mat_[row2][i]);
}
// 交换两列
void swap_cols(int col1, int col2)
{
for (int i = 0; i < get_rows(); i++)
swap_element(mat_[i][col1], mat_[i][col2]);
}
// * ------------------------- 运算符重载的友元声明 ------------------------ *
template <class U>
friend istream &operator>>(istream &in, Matrix<U> &A); //! >>
template <class U>
friend ostream &operator<<(ostream &out, Matrix<U> &A); //! <<
template <class U>
friend Matrix<U> operator+(const Matrix<U> &A, const U &k); //! A + k
template <class U>
friend Matrix<U> operator+(const U &k, const Matrix<U> &A); //! k + A
template <class U>
friend Matrix<U> operator-(const Matrix<U> &A, const U &k); //! A - k
template <class U>
friend Matrix<U> operator-(const U &k, const Matrix<U> &A); //! k - A
template <class U>
friend Matrix<U> operator*(const U &k, const Matrix<U> &A); //! k * A
template <class U>
friend Matrix<U> operator*(const Matrix<U> &A, const U &k); //! A * k
template <class U>
friend Matrix<U> operator/(const U &k, const Matrix<U> &A); //! k / A
template <class U>
friend Matrix<U> operator/(const Matrix<U> &A, const U &k); //! A / k
template <class U>
friend Matrix<U> operator+(const Matrix<U> &A, const Matrix<U> &B); //! A + B
template <class U>
friend Matrix<U> operator-(const Matrix<U> &A, const Matrix<U> &B); //! A - B
template <class U>
friend Matrix<U> operator*(const Matrix<U> &A, const Matrix<U> &B); //! A * B
template <class U>
friend Matrix<U> operator/(const Matrix<U> &A, const Matrix<U> &B); //! A / B
template <class U>
friend Matrix<U> operator^(const Matrix<U> &A, const U &B); //! A^k
//* ------------------------- 静态成员函数生成基本矩阵 --------------------------- */
// 零矩阵
static Matrix<T> zeros(int rows, int cols)
{
return Matrix<T>(rows, cols, 0);
}
// 单位矩阵
static Matrix<T> units(int size)
{
Matrix<T> result = Matrix<T>::zeros(size, size); // 先生成一个size大小的 "方零矩阵"
for (int i = 0; i < result.get_cols(); i++) // 修改对角线元素
result.mat_[i][i] = 1;
return result;
}
//! done: 求逆矩阵(高斯消元实现)
template <class U>
static Matrix<U> inverse(const Matrix<U> &A)
{
double eps = 1e-6;
// 返回double类型,防止精度丢失
Matrix<double> temp = Matrix<double>::augmented_E(A);
for (int i = 0; i < temp.get_rows(); i++)
{
if (fabs(temp.mat_[i][i]) < eps)
{
int j;
for (j = i + 1; j < temp.get_rows(); j++)
if (fabs(temp.mat_[i][j]) > eps)
break;
}
// 初等变换实现消元
for (int i = 0; i < temp.get_rows(); i++)
{
double t = temp.mat_[i][i];
// 将temp.mat_[i][i] = 1;
for (int j = i; j < temp.get_cols(); j++)
temp.mat_[i][j] /= t;
for (int j = i + 1; j < temp.get_rows(); j++)
{
double tt = -1 * (temp.mat_[j][i] / temp.mat_[i][i]);
for (int k = i; k < temp.get_cols(); k++)
temp.mat_[j][k] += tt * temp.mat_[i][k];
}
}
}
for (int i = temp.get_rows() - 1; i >= 0; i--)
{
for (int j = i - 1; j >= 0; j--)
{
double tt = -1 * (temp.mat_[j][i] / temp.mat_[i][i]);
for (int k = i; k < temp.get_cols(); k++)
temp.mat_[j][k] += tt * temp.mat_[i][k];
}
}
// 将temp左半部分传给result
Matrix<double> result(A.get_rows(), A.get_cols(), 0);
for (int i = 0; i < result.get_rows(); i++)
for (int j = result.get_rows(); j < 2 * result.get_rows(); j++)
result.mat_[i][j - result.get_rows()] = temp.mat_[i][j];
// cout<<temp;
return result;
}
//! done: 返回A的增广矩阵A|E
static Matrix<T> augmented_E(const Matrix<T> &A)
{
int rows = A.get_rows();
int cols = A.get_rows() + A.get_cols();
Matrix<T> result = Matrix<T>(rows, cols, 0);
for (int i = 0; i < result.get_rows(); i++)
{
for (int j = 0; j < result.get_cols(); j++)
{
if (j < A.get_cols())
{
result.mat_[i][j] = A.mat_[i][j];
}
else
{
if (j == A.get_cols() + i)
result.mat_[i][j] = 1;
else
result.mat_[i][j] = 0;
}
}
}
return result;
}
//! done: 增广矩阵A' , 返回A的增广矩阵
static Matrix<T> augmented(const Matrix<T> &A, const T *input, int len)
{
int rows = A.get_rows();
int cols = A.get_rows() + 1;
for (int i = 0; i < len; i++)
cout << input[i] << " ";
// input数组长度为A的行数满足条件,可以生成增广矩阵
if (len == rows)
{
Matrix<T> result = Matrix<T>(rows, cols, 0);
for (int i = 0; i < result.get_rows(); i++)
{
for (int j = 0; j < result.get_cols(); j++)
{
if (j < A.get_cols())
result.mat_[i][j] = A.mat_[i][j];
else
result.mat_[i][j] = input[i];
}
}
return result;
}
else
return Matrix<T>::zeros(1, 1);
}
//! done: 高斯消元(初等变换法)求解线性方程
static string Gauss_eliminate(const Matrix<T> &A)
{
Matrix<T> temp = A; // 用于计算的矩阵
double ratio = 0, eps = 1e-6; // 默认最小主元素
int n = temp.get_rows(); // 方程个数
double result[n]; // 存储结果的数组
string result_string = "";
// 消元
for (int k = 0; k < (n); k++)
{
for (int i = (k + 1); i < n; i++)
{
if (abs(temp.mat_[k][k]) < eps)
return "No solution!";
double ratio = temp.mat_[i][k] / temp.mat_[k][k];
for (int j = (k + 1); j < (n + 1); j++)
temp.mat_[i][j] -= ratio * temp.mat_[k][j];
temp.mat_[i][k] = 0;
}
}
result[n - 1] = temp.mat_[n - 1][n] / temp.mat_[n - 1][n - 1]; // 回代
for (int i = (n - 2); i >= 0; i--)
{
double sum = 0;
for (int j = (i + 1); j < n; j++)
{
sum += temp.mat_[i][j] * result[j];
result[i] = (temp.mat_[i][n] - sum) / temp.mat_[i][i];
}
}
// 生成结果字符串
for (int i = 0; i < n; i++)
result_string += "\nresult[" + to_string(i) + "]=" + to_string(result[i]) + "\n";
return result_string;
}
//! done: 高斯核矩阵
static Matrix<double> Gauss_kernel(int size, double sigma)
{
Matrix<double> result = Matrix<double>::zeros(size, size);
const double PI = 4.0 * atan(1.0); // 圆周率赋值
int center = size / 2;
double sum = 0;
for (int i = 0; i < size; i++)
{
for (int j = 0; j < size; j++)
{
result.mat_[i][j] = (1 / (2 * PI * sigma * sigma)) *
exp(-((i - center) * (i - center) + (j - center) * (j - center)) /
(2 * sigma * sigma));
sum += result.mat_[i][j];
}
}
return result;
}
//! done: H 为高斯滤波核矩阵, A 需要高斯滤波的矩阵, 返回滤波后的矩阵
static Matrix<double> Gauss_filter(const Matrix<T> &A, const Matrix<double> &H)
{
Matrix<double> result = Matrix::zeros(A.get_rows(), A.get_cols());
for (int i = 0; i < result.get_rows(); i++)
for (int j = 0; j < result.get_cols(); j++)
result.mat_[i][j] = A.mat_[i][j] * H.mat_[i][j];
return result;
}
private:
int rows\_;
int cols\_;
T \*\*mat\_;
};
//\* --------------------------- 运算符重载 ------------------------------------- \*/
//! done: 重载>>
template <class U>
istream \&operator>>(istream \&in, Matrix<U> \&A)
{
cout << "Input the rows and columns for the matrix" << endl;
in >> A.rows\_ >> A.cols\_;
A.new\_mat();
for (int i = 0; i < A.get\_rows(); i++)
for (int j = 0; j < A.get\_cols(); j++)
in >> A.mat\_\[i]\[j];
return in;
}
//! done: 重载<<
template <class U>
ostream \&operator<<(ostream \&out, Matrix<U> \&A)
{
for (int i = 0; i < A.get\_rows(); i++)
{
out << " \[";
for (int j = 0; j < A.get\_cols(); j++)
out << " " << A.mat\_\[i]\[j];
out << " ]" << endl;
}
out << endl;
return out;
}
//! done A + k
template <class U>
Matrix<U> operator+(const Matrix<U> \&A, const U \&k)
{
if (A.get\_cols() == A.get\_rows()) // A 为方针,可以运算
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get\_cols(); i++) // A + kE
result.mat\_\[i]\[i] += k;
return result;
}
else // 无法运算,返回1×1单位矩阵
return Matrix<U>::zeros(1, 1);
}
//! done k + A
template <class U>
Matrix<U> operator+(const U \&k, const Matrix<U> \&A)
{
if (A.get\_cols() == A.get\_rows()) // A 为方针,可以运算
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get\_cols(); i++) // kE + A
result.mat\_\[i]\[i] += k;
return result;
}
else // 无法运算,返回1×1单位矩阵
return Matrix<U>::zeros(1);
}
//! done: A - k
template <class U>
Matrix<U> operator-(const Matrix<U> \&A, const U \&k)
{
if (A.get\_cols() == A.get\_rows()) // A 为方针,可以运算
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get\_cols(); i++) // A - kE
result.mat\_\[i]\[i] -= k;
return result;
}
else // 无法运算,返回1×1单位矩阵
return Matrix<U>::zeros(1);
}
//! done k - A
template <class U>
Matrix<U> operator-(const U \&k, const Matrix<U> \&A)
{
if (A.get\_cols() == A.get\_rows()) // A 为方针,可以运算
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get\_cols(); i++) // kE - A
for (int j = 0; j < result.get\_cols(); j++)
{
if (i == j)
result.mat\_\[i]\[j] = k - result.mat\_\[i]\[j];
else
result.mat\_\[i]\[j] = -result.mat\_\[i]\[j];
}
return result;
}
else // 无法运算,返回1×1单位矩阵
return Matrix<U>::zeros(1);
}
//! done: k \* A
template <class U>
Matrix<U> operator\*(const U \&k, const Matrix<U> \&A)
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get\_rows(); i++)
for (int j = 0; j < result.get\_cols(); j++)
result.mat\_\[i]\[j] = result.mat\_\[i]\[j] \* k;
return result;
}
//! done: A \* k
template <class U>
Matrix<U> operator\*(const Matrix<U> \&A, const U \&k)
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get\_rows(); i++)
for (int j = 0; j < result.get\_cols(); j++)
result.mat\_\[i]\[j] = result.mat\_\[i]\[j] \* k;
return result;
}
//! done: k / A
template <class U>
Matrix<U> operator/(const U \&k, const Matrix<U> \&A)
{
// k / A = kE \* A^-1
// A 为方针,可以运算
if (A.get\_rows() == A.get\_cols())
{
Matrix<U> result = Matrix<U>(A);
Matrix<U> kE = Matrix<U>::units(A.get\_rows());
kE = kE \* k; // 生成kE
return kE \* Matrix<U>::inverse(A);
}
else // 无法运算,返回零矩阵
return Matrix<U>::zeros(1, 1);
}
//! done: A / k
template <class U>
Matrix<U> operator/(const Matrix<U> \&A, const U \&k)
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get\_rows(); i++)
for (int j = 0; j < result.get\_cols(); j++)
result.mat\_\[i]\[j] = result.mat\_\[i]\[j] / k;
return result;
}
//! done: A + B
template <class U>
Matrix<U> operator+(const Matrix<U> \&A, const Matrix<U> \&B)
{
// A 与 B 维度相同
if ((A.get\_cols() == B.get\_cols()) && (A.get\_rows() == B.get\_rows()))
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get\_rows(); i++)
for (int j = 0; j < B.get\_cols(); j++)
result.mat\_\[i]\[j] += B.mat\_\[i]\[j];
return result;
}
else // 无法运算,返回零矩阵
return Matrix<U>::zeros(1, 1);
}
//! done: A - B
template <class U>
Matrix<U> operator-(const Matrix<U> \&A, const Matrix<U> \&B)
{
// A 与 B 维度相同
if ((A.get\_cols() == B.get\_cols()) && (A.get\_rows() == B.get\_rows()))
{
Matrix<U> result = Matrix<U>(A);
for (int i = 0; i < result.get\_rows(); i++)
for (int j = 0; j < B.get\_cols(); j++)
result.mat\_\[i]\[j] -= B.mat\_\[i]\[j];
return result;
}
else // 无法运算,返回零矩阵
return Matrix<U>::zeros(1, 1);
}
//! done: A \* B
template <class U>
Matrix<U> operator\*(const Matrix<U> \&A, const Matrix<U> \&B)
{
// 先判断能否运算
if (A.get\_cols() == B.get\_rows())
{
Matrix<U> result = Matrix<U>(A.get\_rows(), B.get\_cols(), 0);
for (int i = 0; i < result.get\_rows(); i++)
for (int j = 0; j < result.get\_cols(); j++)
for (int k = 0; k < result.get\_cols(); k++) // 所在行所在列元素相乘
result.mat\_\[i]\[j] += A.mat\_\[i]\[k] \* B.mat\_\[k]\[j];
return result;
}
else // 无法运算,返回零矩阵
return Matrix<U>::zeros(1, 1);
}
//! done: A / B
template <class U>
Matrix<U> operator/(const Matrix<U> \&A, const Matrix<U> \&B)
{
// A / B == A \* B^-1
// 先判断能否运算
if (A.get\_cols() == B.get\_rows())
return A \* (Matrix<U>::inverse(B));
else
return Matrix<U>::zeros(1, 1);
}
//! done: A^k
template <class U>
Matrix<U> operator^(const Matrix<U> \&A, int k)
{
Matrix<U> result = Matrix<U>::units(A.get\_cols());
Matrix<U> temp = A;
// 快速幂进行运算
while (k)
{
if (k % 2)
result = result * temp;
k /= 2;
temp = temp * temp;
}
return result;
}
int main()
{
// Matrix<int> matrix1(3, 3, 3);
// Matrix<double> matrix1\_4(3, 4, 4);
// Matrix<int> matrix2(4, 4, 4);
// // Matrix<double> matrix3 = { {5,5,-1,7,54},{4,-9,20,12,-6},{9,-18,-3,1,21},{ 61,-8,-10,3,13 },{ 29,-28,-1,4,14 } };
// // Matrix<int> matrix4 = Matrix<int>(matrix1);
// Matrix<double> matrix5 = matrix1\_4 \* (0.3);
// Matrix<int> matrix6 = Matrix<int>::units(3);
// matrix1.show\_mat();
// matrix2.show\_mat();
// // matrix3.show\_mat();
// // matrix4.show\_mat();
// matrix5.show\_mat();
// matrix6.show\_mat();
// cout<\<matrix6;
// Matrix<double> matrix = Matrix<double>::augmented\_E(matrix1\_4);
// matrix.swap\_rows(0,1);
// cout << matrix;
// Matrix<double> matrix10;
// cin >> matrix10;
// Matrix<double> temp = Matrix<double>::inverse(matrix10);
// Matrix<double> temp1 = Matrix<double>::inverse(matrix10);
// cout << temp;
// temp = temp ^ 2;
// cout<\<temp;
// temp1 = temp1 \* temp1;
// cout<\<temp1;
// cout <<( matrix != matrix);
//! 测试=, ==, != 重载
Matrix<int> m1(3, 3, 3);
Matrix<int> m2(3, 3, 4);
cout << m1 << m2 << endl;
cout << (m1 == m2);
// double input[] = {6,18,7};
// cout<<"len = "<< sizeof(input)/sizeof(input[0])<<endl;
// Matrix<double> Equations;
// cin >> Equations;
// Equations = Matrix<double>::augmented(Equations,input,sizeof(input)/sizeof(input[0]));
// cout<< Equations;
// cout<< Matrix<double>::Gauss_eliminate(Equations);
//! 测试高斯滤波
Matrix<double> temp(5, 5, 100);
cout << temp << endl;
temp = Matrix<double>::Gauss_filter(temp, Matrix<double>::Gauss_kernel(5, 5));
cout << temp;
//! 测试文件和流
// Matrix<double> matrix_IO;
// matrix_IO.load_matrix("input.txt");
// matrix_IO.write_matrix("output.txt");
// 测试初始化列表
initializer_list<initializer_list<int>> initializerL_mat = {{1, 2, 3}, {2, 2, 2}, {3, 3, 3}};
Matrix<int> matrix_initializer(initializerL_mat);
cout << matrix_initializer;
}