react 知识储备

88 阅读27分钟

中篇主要从以下几个方面对 React 展开阐述:

框架: React

React 也是现如今最流行的前端框架,也是很多大厂面试必备。React 与 Vue 虽有不同,但同样作为一款 UI 框架,虽然实现可能不一样,但在一些理念上还是有相似的,例如数据驱动、组件化、虚拟 dom 等。这里就主要列举一些 React 中独有的概念。

v18有哪些更新

  1. setState自动批处理

在react17中,只有react事件会进行批处理,原生js事件、promise,setTimeout、setInterval不会

react18,将所有事件都进行批处理,即多次setState会被合并为1次执行,提高了性能,在数据层,将多个状态更新合并成一次处理(在视图层,将多次渲染合并成一次渲染)

  1. 引入了新的root API,支持new concurrent renderer(并发模式的渲染)
  2. 去掉了对IE浏览器的支持,react18引入的新特性全部基于现代浏览器,如需支持需要退回到react17版本
  3. flushSync (批量更新是一个破坏性的更新,如果想退出批量更新,可以使用flushSync)
  4. react组件返回值更新
  • 在react17中,返回空组件只能返回null,显式返回undefined会报错
  • 在react18中,支持null和undefined返回
  1. strict mode更新

当你使用严格模式时,React会对每个组件返回两次渲染,以便你观察一些意想不到的结果,在react17中去掉了一次渲染的控制台日志,以便让日志容易阅读。react18取消了这个限制,第二次渲染会以浅灰色出现在控制台日志

  1. Suspense不再需要fallback捕获
  2. 支持useId

在服务器和客户端生成相同的唯一一个id,避免hydrating的不兼容

  1. useSyncExternalStore

用于解决外部数据撕裂问题

  1. useInsertionEffect

这个hooks只建议在css in js库中使用,这个hooks执行时机在DOM生成之后,useLayoutEffect执行之前,它的工作原理大致与useLayoutEffect相同,此时无法访问DOM节点的引用,一般用于提前注入脚本

  1. Concurrent Mode

并发模式不是一个功能,而是一个底层设计。

它可以帮助应用保持响应,根据用户的设备性能和网速进行调整,它通过渲染可中断来修复阻塞渲染机制。在concurrent模式中,React可以同时更新多个状态

区别就是使同步不可中断更新变成了异步可中断更新

useDeferredValue和startTransition用来标记一次非紧急更新

2. 生命周期

80404608.jpg

1584430610.jpg 在新版本中,React 官方对生命周期有了新的 变动建议:

  • 使用getDerivedStateFromProps 替换 componentWillMountcomponentWillReceiveProps
  • 使用getSnapshotBeforeUpdate替换componentWillUpdate
  • 避免使用componentWillReceiveProps

其实该变动的原因,正是由于上述提到的 Fiber。首先,从上面我们知道 React 可以分成 reconciliation 与 commit 两个阶段,对应的生命周期如下:

  • reconciliation:

    • componentWillMount
    • componentWillReceiveProps
    • shouldComponentUpdate
    • componentWillUpdate
  • commit:

    • componentDidMount
    • componentDidUpdate
    • componentWillUnmount

在 Fiber 中,reconciliation 阶段进行了任务分割,涉及到 暂停 和 重启,因此可能会导致 reconciliation 中的生命周期函数在一次更新渲染循环中被 多次调用 的情况,产生一些意外错误。

新版的建议生命周期如下:

class Component extends React.Component {
      // 替换 `componentWillReceiveProps` ,
      // 初始化和 update 时被调用
      // 静态函数,无法使用 this
      static getDerivedStateFromProps(nextProps, prevState) {}
      
      // 判断是否需要更新组件
      // 可以用于组件性能优化
      shouldComponentUpdate(nextProps, nextState) {}
      
      // 组件被挂载后触发
      componentDidMount() {}
      
      // 替换 componentWillUpdate
      // 可以在更新之前获取最新 dom 数据
      getSnapshotBeforeUpdate() {}
      
      // 组件更新后调用
      componentDidUpdate() {}
      
      // 组件即将销毁
      componentWillUnmount() {}
      
      // 组件已销毁
      componentDidUnmount() {}
    }

  • 使用建议:

    • constructor初始化 state;

    • componentDidMount中进行事件监听,并在componentWillUnmount中解绑事件;

    • componentDidMount中进行数据的请求,而不是在componentWillMount

    • 需要根据 props 更新 state 时,使用getDerivedStateFromProps(nextProps, prevState)

      • 旧 props 需要自己存储,以便比较;
    public static getDerivedStateFromProps(nextProps, prevState) {
    	// 当新 props 中的 data 发生变化时,同步更新到 state 上
    	if (nextProps.data !== prevState.data) {
    		return {
    			data: nextProps.data
    		}
    	} else {
    		return null1
    	}
    }复制代码
    
    • 可以在componentDidUpdate监听 props 或者 state 的变化,例如:
    componentDidUpdate(prevProps) {
    	// 当 id 发生变化时,重新获取数据
    	if (this.props.id !== prevProps.id) {
    		this.fetchData(this.props.id);
    	}
    }复制代码
    
    • componentDidUpdate使用setState时,必须加条件,否则将进入死循环;
    • getSnapshotBeforeUpdate(prevProps, prevState)可以在更新之前获取最新的渲染数据,它的调用是在 render 之后, update 之前;
    • shouldComponentUpdate: 默认每次调用setState,一定会最终走到 diff 阶段,但可以通过shouldComponentUpdate的生命钩子返回false来直接阻止后面的逻辑执行,通常是用于做条件渲染,优化渲染的性能。(默认值是true)

3. setState

在了解setState之前,我们先来简单了解下 React 一个包装结构: Transaction:

  • 事务 (Transaction):

    • 是 React 中的一个调用结构,用于包装一个方法,结构为: initialize - perform(method) - close。通过事务,可以统一管理一个方法的开始与结束;处于事务流中,表示进程正在执行一些操作;

  • setState: React 中用于修改状态,更新视图。它具有以下特点:

  • 异步与同步: setState并不是单纯的异步或同步,这其实与调用时的环境相关:

    • 合成事件生命周期钩子(除 componentDidUpdate) 中,setState是"异步"的;

      • 原因: 因为在setState的实现中,有一个判断: 当更新策略正在事务流的执行中时,该组件更新会被推入dirtyComponents队列中等待执行;否则,开始执行batchedUpdates队列更新;

        • 在生命周期钩子调用中,更新策略都处于更新之前,组件仍处于事务流中,而componentDidUpdate是在更新之后,此时组件已经不在事务流中了,因此则会同步执行;
        • 在合成事件中,React 是基于 事务流完成的事件委托机制 实现,也是处于事务流中;
      • 问题: 无法在setState后马上从this.state上获取更新后的值。

      • 解决: 如果需要马上同步去获取新值,setState其实是可以传入第二个参数的。setState(updater, callback),在回调中即可获取最新值;

    • 原生事件setTimeout 中,setState是同步的,可以马上获取更新后的值;

      • 原因: 原生事件是浏览器本身的实现,与事务流无关,自然是同步;而setTimeout是放置于定时器线程中延后执行,此时事务流已结束,因此也是同步;
  • 批量更新: 在 合成事件生命周期钩子 中,setState更新队列时,存储的是 合并状态(Object.assign)。因此前面设置的 key 值会被后面所覆盖,最终只会执行一次更新;

  • 函数式: 由于 Fiber 及 合并 的问题,官方推荐可以传入 函数 的形式。setState(fn),在fn中返回新的state对象即可,例如this.setState((state, props) => newState);

    • 使用函数式,可以用于避免setState的批量更新的逻辑,传入的函数将会被 顺序调用
  • 注意事项:

    • setState 合并,在 合成事件 和 生命周期钩子 中多次连续调用会被优化为一次;

    • 当组件已被销毁,如果再次调用setState,React 会报错警告,通常有两种解决办法:

      • 将数据挂载到外部,通过 props 传入,如放到 Redux 或 父级中;
      • 在组件内部维护一个状态量 (isUnmounted),componentWillUnmount中标记为 true,在setState前进行判断;

4. HOC(高阶组件)

HOC(Higher Order Componennt) 是在 React 机制下社区形成的一种组件模式,在很多第三方开源库中表现强大。

  • 简述:

    • 高阶组件不是组件,是 增强函数,可以输入一个元组件,返回出一个新的增强组件;
    • 高阶组件的主要作用是 代码复用操作 状态和参数;
  • 用法:

    • 属性代理 (Props Proxy) : 返回出一个组件,它基于被包裹组件进行 功能增强

      • 默认参数: 可以为组件包裹一层默认参数;
      function proxyHoc(Comp) {
      	return class extends React.Component {
      		render() {
      			const newProps = {
      				name: 'tayde',
      				age: 1,
      			}
      			return <Comp {...this.props} {...newProps} />
      		}
      	}
      }复制代码
      
      • 提取状态: 可以通过 props 将被包裹组件中的 state 依赖外层,例如用于转换受控组件:
      function withOnChange(Comp) {
      	return class extends React.Component {
      		constructor(props) {
      			super(props)
      			this.state = {
      				name: '',
      			}
      		}
      		onChangeName = () => {
      			this.setState({
      				name: 'dongdong',
      			})
      		}
      		render() {
      			const newProps = {
      				value: this.state.name,
      				onChange: this.onChangeName,
      			}
      			return <Comp {...this.props} {...newProps} />
      		}
      	}
      }复制代码
      

      使用姿势如下,这样就能非常快速的将一个 Input 组件转化成受控组件。

      const NameInput = props => (<input name="name" {...props} />)
      export default withOnChange(NameInput)复制代码
      
      • 包裹组件: 可以为被包裹元素进行一层包装,
function withMask(Comp) {
              return class extends React.Component {
                  render() {
            		  return (
            		      <div>
            			 <Comp {...this.props} />
                                    <div style={{
                                        width: '100%',
                                        height: '100%',
                                        backgroundColor: 'rgba(0, 0, 0, .6)',
            			  }} 
            			  </div>
            		  )
            	  }
              }
            }

*   **反向继承** (Inheritance Inversion): 返回出一个组件,**继承于被包裹组件**,常用于以下操作:

        function IIHoc(Comp) {
            return class extends Comp {
                render() {
                    return super.render();
                }
            };
        }复制代码

    *   **渲染劫持** (Render Highjacking)

        *   **条件渲染**: 根据条件,渲染不同的组件

        <!---->

            function withLoading(Comp) {
                return class extends Comp {
                    render() {
                        if(this.props.isLoading) {
                            return <Loading />
                        } else {
                            return super.render()
                        }
                    }
                };
            }复制代码

        *   可以直接修改被包裹组件渲染出的 React 元素树

    *   **操作状态** (Operate State): 可以直接通过 `this.state` 获取到被包裹组件的状态,并进行操作。但这样的操作容易使 state 变得难以追踪,不易维护,谨慎使用。
  • 应用场景:

    • 权限控制,通过抽象逻辑,统一对页面进行权限判断,按不同的条件进行页面渲染:
    function withAdminAuth(WrappedComponent) {
        return class extends React.Component {
    		constructor(props){
    			super(props)
    			this.state = {
    		    	isAdmin: false,
    			}
    		} 
    		async componentWillMount() {
    		    const currentRole = await getCurrentUserRole();
    		    this.setState({
    		        isAdmin: currentRole === 'Admin',
    		    });
    		}
    		render() {
    		    if (this.state.isAdmin) {
    		        return <Comp {...this.props} />;
    		    } else {
    		        return (<div>您没有权限查看该页面,请联系管理员!</div>);
    		    }
    		}
        };
    }复制代码
    
    • 性能监控,包裹组件的生命周期,进行统一埋点:
    function withTiming(Comp) {
        return class extends Comp {
            constructor(props) {
                super(props);
                this.start = Date.now();
                this.end = 0;
            }
            componentDidMount() {
                super.componentDidMount && super.componentDidMount();
                this.end = Date.now();
                console.log(`${WrappedComponent.name} 组件渲染时间为 ${this.end - this.start} ms`);
            }
            render() {
                return super.render();
            }
        };
    }复制代码
    
    • 代码复用,可以将重复的逻辑进行抽象。
  • 使用注意:

      1. 纯函数: 增强函数应为纯函数,避免侵入修改元组件;
      1. 避免用法污染: 理想状态下,应透传元组件的无关参数与事件,尽量保证用法不变;
      1. 命名空间: 为 HOC 增加特异性的组件名称,这样能便于开发调试和查找问题;
      1. 引用传递: 如果需要传递元组件的 refs 引用,可以使用React.forwardRef
      1. 静态方法: 元组件上的静态方法并无法被自动传出,会导致业务层无法调用;解决:
      • 函数导出
      • 静态方法赋值
      1. 重新渲染: 由于增强函数每次调用是返回一个新组件,因此如果在 Render 中使用增强函数,就会导致每次都重新渲染整个HOC,而且之前的状态会丢失;

5. Redux (StoreActionReducer

Redux 是一个 数据管理中心,可以把它理解为一个全局的 data store 实例。它通过一定的使用规则和限制,保证着数据的健壮性、可追溯和可预测性。它与 React 无关,可以独立运行于任何 JavaScript 环境中,从而也为同构应用提供了更好的数据同步通道。

  • 核心理念:

    • 单一数据源: 整个应用只有唯一的状态树,也就是所有 state 最终维护在一个根级 Store 中;

    • 状态只读: 为了保证状态的可控性,最好的方式就是监控状态的变化。那这里就两个必要条件:

      • Redux Store 中的数据无法被直接修改;
      • 严格控制修改的执行;
    • 纯函数: 规定只能通过一个纯函数 (Reducer) 来描述修改;

  • 大致的数据结构如下所示:

  • 理念实现:

    • Store: 全局 Store 单例, 每个 Redux 应用下只有一个 store, 它具有以下方法供使用:

      • getState: 获取 state;
      • dispatch: 触发 action, 更新 state;
      • subscribe: 订阅数据变更,注册监听器;
    // 创建
    const store = createStore(Reducer, initStore)复制代码
    
    • Action: 它作为一个行为载体,用于映射相应的 Reducer,并且它可以成为数据的载体,将数据从应用传递至 store 中,是 store 唯一的数据源

// 一个普通的 Action
        const action = {
        	type: 'ADD_LIST',
        	item: 'list-item-1',
        }

        // 使用:
        store.dispatch(action)

        // 通常为了便于调用,会有一个 Action 创建函数 (action creater)
        funtion addList(item) {
        	return const action = {
        		type: 'ADD_LIST',
        		item,
        	}
        }

        // 调用就会变成:
        dispatch(addList('list-item-1'))

    *   **Reducer**: 用于描述如何修改数据的纯函数,Action 属于行为名称,而 Reducer 便是修改行为的实质;

    <!---->

        // 一个常规的 Reducer
        // @param {state}: 旧数据
        // @param {action}: Action 对象
        // @returns {any}: 新数据
        const initList = []
        function ListReducer(state = initList, action) {
        	switch (action.type) {
        		case 'ADD_LIST':
        			return state.concat([action.item])
        			break
        		defalut:
        			return state
        	}
        }

注意: > > 1. 遵守数据不可变,不要去直接修改 state,而是返回出一个 新对象,可以使用 assign / copy / extend / 解构 等方式创建新对象; > 2. 默认情况下需要 返回原数据,避免数据被清空; > 3. 最好设置 初始值,便于应用的初始化及数据稳定;

  • 进阶:

    • React-Redux: 结合 React 使用;

      • <Provider>: 将 store 通过 context 传入组件中;

      • connect: 一个高阶组件,可以方便在 React 组件中使用 Redux;

          1. store通过mapStateToProps进行筛选后使用props注入组件
          1. 根据mapDispatchToProps创建方法,当组件调用时使用dispatch触发对应的action
    • Reducer 的拆分与重构:

      • 随着项目越大,如果将所有状态的 reducer 全部写在一个函数中,将会 难以维护
      • 可以将 reducer 进行拆分,也就是 函数分解,最终再使用combineReducers()进行重构合并;
    • 异步 Action: 由于 Reducer 是一个严格的纯函数,因此无法在 Reducer 中进行数据的请求,需要先获取数据,再dispatch(Action)即可,下面是三种不同的异步实现:

React Hooks

React 中通常使用 类定义 或者 函数定义 创建组件:

在类定义中,我们可以使用到许多 React 特性,例如 state、 各种组件生命周期钩子等,但是在函数定义中,我们却无能为力,因此 React 16.8 版本推出了一个新功能 (React Hooks),通过它,可以更好的在函数定义组件中使用 React 特性。

  • 好处:

    • 1、跨组件复用: 其实 render props / HOC 也是为了复用,相比于它们,Hooks 作为官方的底层 API,最为轻量,而且改造成本小,不会影响原来的组件层次结构和传说中的嵌套地狱;

    • 2、类定义更为复杂:

      • 不同的生命周期会使逻辑变得分散且混乱,不易维护和管理;
      • 时刻需要关注this的指向问题;
      • 代码复用代价高,高阶组件的使用经常会使整个组件树变得臃肿;
    • 3、状态与UI隔离: 正是由于 Hooks 的特性,状态逻辑会变成更小的粒度,并且极容易被抽象成一个自定义 Hooks,组件中的状态和 UI 变得更为清晰和隔离。

  • 注意:

    • 避免在 循环/条件判断/嵌套函数 中调用 hooks,保证调用顺序的稳定;
    • 只有 函数定义组件 和 hooks 可以调用 hooks,避免在 类组件 或者 普通函数 中调用;
    • 不能在useEffect中使用useState,React 会报错提示;
    • 类组件不会被替换或废弃,不需要强制改造类组件,两种方式能并存;
  • 重要钩子*:

    • 状态钩子 (useState): 用于定义组件的 State,其到类定义中this.state的功能;
        // 返回的是组件名和更改该组件对应的函数
        const [flag, setFlag] = useState(true);
        // 修改状态
        setFlag(false)
        	
        // 上面的代码映射到类定义中:
        this.state = {
        	flag: true	
        }
        const flag = this.state.flag
        const setFlag = (bool) => {
            this.setState({
                flag: bool,
            })
        }

生命周期钩子 (useEffect):

类定义中有许多生命周期函数,而在 React Hooks 中也提供了一个相应的函数 (useEffect),这里可以看做componentDidMountcomponentDidUpdatecomponentWillUnmount的结合。 useEffect(callback, [source])接受两个参数 * callback: 钩子回调函数; * source: 设置触发条件,仅当 source 发生改变时才会触发; * useEffect钩子在没有传入[source]参数时,默认在每次 render 时都会优先调用上次保存的回调中返回的函数,后再重新调用回调;

 // 第一个参数执行函数,第二个参数不传
    useEffect(() => {
      console.log('componentDidMount / componentDidUpdate')
    })

    // 第一个参数执行函数,第二个参数传空数组[]
     useEffect(() => {
        console.log('componentDidMount')
     }, []) // 第二个参数是 [] (不依赖于任何 state)
     
     // 第一个参数执行函数,第二个参数传state数组
     useEffect(() => {
         console.log('componentDidUpdate')
     }, [count, name]) // 第二个参数就是依赖的 state

    useEffect(() => {
        let timerId = window.setInterval(() => {
            console.log(Date.now(),'componentDidMount 和 componentWillUnmount')
        }, 1000)
        // 返回一个函数
        // 模拟 componentWillUnmount 组件销毁的时候 停止计时器
        return () => {
            window.clearInterval(timerId)
        }
    }, [])
  • 其它内置钩子:

    • useContext: 获取 context 对象

    • useReducer: 类似于 Redux 思想的实现,但其并不足以替代 Redux,可以理解成一个组件内部的 redux:

      • 并不是持久化存储,会随着组件被销毁而销毁;
      • 属于组件内部,各个组件是相互隔离的,单纯用它并无法共享数据;
      • 配合useContext的全局性,可以完成一个轻量级的 Redux;(easy-peasy)
    • useCallback: 缓存回调函数,避免传入的回调每次都是新的函数实例而导致依赖组件重新渲染,具有性能优化的效果;

    • useMemo: 用于缓存传入的 props,避免依赖的组件每次都重新渲染;

    • useRef: 获取组件的真实节点;

    • useLayoutEffect:

      • DOM更新同步钩子。用法与useEffect类似,只是区别于执行时间点的不同。
      • useEffect属于异步执行,并不会等待 DOM 真正渲染后执行,而useLayoutEffect则会真正渲染后才触发;
      • 可以获取更新后的 state;
  • 自定义钩子(useXxxxx): 基于 Hooks 可以引用其它 Hooks 这个特性,我们可以编写自定义钩子,如上面的useMounted。又例如,我们需要每个页面自定义标题:

function useTitle(title) {
  useEffect(
    () => {
      document.title = title;
    });
}

// 使用:
function Home() {
	const title = '我是首页'
	useTitle(title)
	
	return (
		<div>{title}</div>
	)
}复制代码

7. SSR

SSR,俗称 服务端渲染 (Server Side Render),讲人话就是: 直接在服务端层获取数据,渲染出完成的 HTML 文件,直接返回给用户浏览器访问。

  • 前后端分离: 前端与服务端隔离,前端动态获取数据,渲染页面。

  • 痛点:

    • 首屏渲染性能瓶颈:

      • 空白延迟: HTML下载时间 + JS下载/执行时间 + 请求时间 + 渲染时间。在这段时间内,页面处于空白的状态。
    • SEO 问题: 由于页面初始状态为空,因此爬虫无法获取页面中任何有效数据,因此对搜索引擎不友好。

      • 虽然一直有在提动态渲染爬虫的技术,不过据我了解,大部分国内搜索引擎仍然是没有实现。

最初的服务端渲染,便没有这些问题。但我们不能返璞归真,既要保证现有的前端独立的开发模式,又要由服务端渲染,因此我们使用 React SSR。

  • 原理:

    • Node 服务: 让前后端运行同一套代码成为可能。
    • Virtual Dom: 让前端代码脱离浏览器运行。
  • 条件: Node 中间层、 React / Vue 等框架。 结构大概如下:

  • 开发流程: (此处以 React + Router + Redux + Koa 为例)

    • 1、在同个项目中,搭建 前后端部分,常规结构:

      • build

      • public

      • src

        • client
        • server
    • 2、server 中使用 Koa 路由监听 页面访问:

    import * as Router from 'koa-router'
    
    const router = new Router()
    // 如果中间也提供 Api 层
    router.use('/api/home', async () => {
    	// 返回数据
    })
    
    router.get('*', async (ctx) => {
    	// 返回 HTML
    })复制代码
    
    • 3、通过访问 url 匹配 前端页面路由:
    // 前端页面路由
    import { pages } from '../../client/app'
    import { matchPath } from 'react-router-dom'
    
    // 使用 react-router 库提供的一个匹配方法
    const matchPage = matchPath(ctx.req.url, page)复制代码
    
    • 4、通过页面路由的配置进行 数据获取。通常可以在页面路由中增加 SSR 相关的静态配置,用于抽象逻辑,可以保证服务端逻辑的通用性,如:

      class HomePage extends React.Component{
      	public static ssrConfig = {
      		  cache: true,
               fetch() {
              	  // 请求获取数据
               }
          }
      }复制代码
      

      获取数据通常有两种情况:

      • 中间层也使用 http 获取数据,则此时 fetch 方法可前后端共享;
      const data = await matchPage.ssrConfig.fetch()复制代码
      
      • 中间层并不使用 http,是通过一些 内部调用,例如 Rpc 或 直接读数据库 等,此时也可以直接由服务端调用对应的方法获取数据。通常,这里需要在 ssrConfig 中配置特异性的信息,用于匹配对应的数据获取方法。
      // 页面路由
      class HomePage extends React.Component{
      	public static ssrConfig = {
              fetch: {
              	 url: '/api/home',
              }
          }
      }
      
      // 根据规则匹配出对应的数据获取方法
      // 这里的规则可以自由,只要能匹配出正确的方法即可
      const controller = matchController(ssrConfig.fetch.url)
      
      // 获取数据
      const data = await controller(ctx)复制代码
      
    • 5、创建 Redux store,并将数据dispatch到里面:

    import { createStore } from 'redux'
    // 获取 Clinet层 reducer
    // 必须复用前端层的逻辑,才能保证一致性;
    import { reducers } from '../../client/store'
    
    // 创建 store
    const store = createStore(reducers)
     
    // 获取配置好的 Action
    const action = ssrConfig.action
    
    // 存储数据	
    store.dispatch(createAction(action)(data))复制代码
    
    • 6、注入 Store, 调用renderToString将 React Virtual Dom 渲染成 字符串:
    import * as ReactDOMServer from 'react-dom/server'
    import { Provider } from 'react-redux'
    
    // 获取 Clinet 层根组件
    import { App } from '../../client/app'
    
    const AppString = ReactDOMServer.renderToString(
    	<Provider store={store}>
    		<StaticRouter
    			location={ctx.req.url}
    			context={{}}>
    			<App />
    		</StaticRouter>
    	</Provider>
    )复制代码
    
    • 7、将 AppString 包装成完整的 html 文件格式;
    • 8、此时,已经能生成完整的 HTML 文件。但只是个纯静态的页面,没有样式没有交互。接下来我们就是要插入 JS 与 CSS。我们可以通过访问前端打包后生成的asset-manifest.json文件来获取相应的文件路径,并同样注入到 Html 中引用。
    const html = `
    	<!DOCTYPE html>
    	<html lang="zh">
    		<head></head>
    		<link href="${cssPath}" rel="stylesheet" />
    		<body>
    			<div id="App">${AppString}</div>
    			<script src="${scriptPath}"></script>
    		</body>
    	</html>
    `复制代码
    
    • 9、进行 数据脱水: 为了把服务端获取的数据同步到前端。主要是将数据序列化后,插入到 html 中,返回给前端。
    import serialize from 'serialize-javascript'
    // 获取数据
    const initState = store.getState()
    const html = `
    	<!DOCTYPE html>
    	<html lang="zh">
    		<head></head>
    		<body>
    			<div id="App"></div>
    			<script type="application/json" id="SSR_HYDRATED_DATA">${serialize(initState)}</script>
    		</body>
    	</html>
    `
    
    ctx.status = 200
    ctx.body = html复制代码
    

    Tips:

    这里比较特别的有两点:

    1. 使用了serialize-javascript序列化 store, 替代了JSON.stringify,保证数据的安全性,避免代码注入和 XSS 攻击;
    2. 使用 json 进行传输,可以获得更快的加载速度;
    • 10、Client 层 数据吸水: 初始化 store 时,以脱水后的数据为初始化数据,同步创建 store。
    const hydratedEl = document.getElementById('SSR_HYDRATED_DATA')
    const hydrateData = JSON.parse(hydratedEl.textContent)
    
    // 使用初始 state 创建 Redux store
    const store = createStore(reducer, hydrateData)复制代码
    

8. 函数式编程

函数式编程是一种 编程范式,你可以理解为一种软件架构的思维模式。它有着独立一套理论基础与边界法则,追求的是 更简洁、可预测、高复用、易测试。其实在现有的众多知名库中,都蕴含着丰富的函数式编程思想,如 React / Redux 等。

  • 常见的编程范式:

    • 命令式编程(过程化编程): 更关心解决问题的步骤,一步步以语言的形式告诉计算机做什么;

    • 事件驱动编程: 事件订阅与触发,被广泛用于 GUI 的编程设计中;

    • 面向对象编程: 基于类、对象与方法的设计模式,拥有三个基础概念: 封装性、继承性、多态性;

    • 函数式编程

      • 换成一种更高端的说法,面向数学编程。怕不怕~🥴
  • 函数式编程的理念:

    • 纯函数(确定性函数): 是函数式编程的基础,可以使程序变得灵活,高度可拓展,可维护;

      • 优势:

        • 完全独立,与外部解耦;
        • 高度可复用,在任意上下文,任意时间线上,都可执行并且保证结果稳定;
        • 可测试性极强;
      • 条件:

        • 不修改参数;
        • 不依赖、不修改任何函数外部的数据;
        • 完全可控,参数一样,返回值一定一样: 例如函数不能包含new Date()或者Math.rando()等这种不可控因素;
        • 引用透明;
      • 我们常用到的许多 API 或者工具函数,它们都具有着纯函数的特点, 如split / join / map

    • 函数复合: 将多个函数进行组合后调用,可以实现将一个个函数单元进行组合,达成最后的目标;

      • 扁平化嵌套: 首先,我们一定能想到组合函数最简单的操作就是 包裹,因为在 JS 中,函数也可以当做参数:

        • f(g(k(x))): 嵌套地狱,可读性低,当函数复杂后,容易让人一脸懵逼;
        • 理想的做法: xxx(f, g, k)(x)
      • 结果传递: 如果想实现上面的方式,那也就是xxx函数要实现的便是: 执行结果在各个函数之间的执行传递;

        • 这时我们就能想到一个原生提供的数组方法: reduce,它可以按数组的顺序依次执行,传递执行结果;
        • 所以我们就能够实现一个方法pipe,用于函数组合:
        // ...fs: 将函数组合成数组;
        // Array.prototype.reduce 进行组合;
        // p: 初始参数;
        const pipe = (...fs) => p => fs.reduce((v, f) => f(v), p)复制代码
        
      • 使用: 实现一个 驼峰命名 转 中划线命名 的功能:

      // 'Guo DongDong' --> 'guo-dongdong'
      // 函数组合式写法
      const toLowerCase = str => str.toLowerCase()
      const join = curry((str, arr) => arr.join(str))
      const split = curry((splitOn, str) => str.split(splitOn));
      
      const toSlug = pipe(
      	toLowerCase,	
      	split(' '),
      	join('_'),
      	encodeURIComponent,
      );
      console.log(toSlug('Guo DongDong'))复制代码
      
      • 好处:

        • 隐藏中间参数,不需要临时变量,避免了这个环节的出错几率;
        • 只需关注每个纯函数单元的稳定,不再需要关注命名,传递,调用等;
        • 可复用性强,任何一个函数单元都可被任意复用和组合;
        • 可拓展性强,成本低,例如现在加个需求,要查看每个环节的输出:
        const log = curry((label, x) => {
        	console.log(`${ label }: ${ x }`);
        	return x;
        });
        
        const toSlug = pipe(
        	toLowerCase,	
        	log('toLowerCase output'),
        	split(' '),
        	log('split output'),
        	join('_'),
        	log('join output'),
        	encodeURIComponent,
        );复制代码
        

      Tips:

      一些工具纯函数可直接引用lodash/fp,例如curry/map/split等,并不需要像我们上面这样自己实现;

    • 数据不可变性(immutable): 这是一种数据理念,也是函数式编程中的核心理念之一:

      • 倡导: 一个对象再被创建后便不会再被修改。当需要改变值时,是返回一个全新的对象,而不是直接在原对象上修改;

      • 目的: 保证数据的稳定性。避免依赖的数据被未知地修改,导致了自身的执行异常,能有效提高可控性与稳定性;

      • 并不等同于const。使用const创建一个对象后,它的属性仍然可以被修改;

      • 更类似于Object.freeze: 冻结对象,但freeze仍无法保证深层的属性不被串改;

      • immutable.js: js 中的数据不可变库,它保证了数据不可变,在 React 生态中被广泛应用,大大提升了性能与稳定性;

        • trie数据结构:

          • 一种数据结构,能有效地深度冻结对象,保证其不可变;
          • 结构共享: 可以共用不可变对象的内存引用地址,减少内存占用,提高数据操作性能;
    • 避免不同函数之间的 状态共享,数据的传递使用复制或全新对象,遵守数据不可变原则;

    • 避免从函数内部 改变外部状态,例如改变了全局作用域或父级作用域上的变量值,可能会导致其它单位错误;

    • 避免在单元函数内部执行一些 副作用,应该将这些操作抽离成更独立的工具单元;

      • 日志输出
      • 读写文件
      • 网络请求
      • 调用外部进程
      • 调用有副作用的函数
  • 高阶函数: 是指 以函数为参数,返回一个新的增强函数 的一类函数,它通常用于:

    • 将逻辑行为进行 隔离抽象,便于快速复用,如处理数据,兼容性等;
    • 函数组合,将一系列单元函数列表组合成功能更强大的函数;
    • 函数增强,快速地拓展函数功能,
  • 函数式编程的好处:

    • 函数副作用小,所有函数独立存在,没有任何耦合,复用性极高;
    • 不关注执行时间,执行顺序,参数,命名等,能专注于数据的流动与处理,能有效提高稳定性与健壮性;
    • 追求单元化,粒度化,使其重构和改造成本降低,可维护、可拓展性较好;
    • 更易于做单元测试。

Fiber

React 的核心流程可以分为两个部分:

  • reconciliation (调度算法,也可称为 render):

    • 更新 state 与 props;

    • 调用生命周期钩子;

    • 生成 virtual dom;

      • 这里应该称为 Fiber Tree 更为符合;
    • 通过新旧 vdom 进行 diff 算法,获取 vdom change;

    • 确定是否需要重新渲染

  • commit:

    • 如需要,则操作 dom 节点更新;

要了解 Fiber,我们首先来看为什么需要它?

  • 问题: 随着应用变得越来越庞大,整个更新渲染的过程开始变得吃力,大量的组件渲染会导致主进程长时间被占用,导致一些动画或高频操作出现卡顿和掉帧的情况。而关键点,便是 同步阻塞。在之前的调度算法中,React 需要实例化每个类组件,生成一颗组件树,使用 同步递归 的方式进行遍历渲染,而这个过程最大的问题就是无法 暂停和恢复

  • 解决方案: 解决同步阻塞的方法,通常有两种: 异步任务分割。而 React Fiber 便是为了实现任务分割而诞生的。

  • 简述:

    • 在 React V16 将调度算法进行了重构, 将之前的 stack reconciler 重构成新版的 fiber reconciler,变成了具有链表和指针的 单链表树遍历算法。通过指针映射,每个单元都记录着遍历当下的上一步与下一步,从而使遍历变得可以被暂停和重启。
    • 这里我理解为是一种 任务分割调度算法,主要是 将原先同步更新渲染的任务分割成一个个独立的 小任务单位,根据不同的优先级,将小任务分散到浏览器的空闲时间执行,充分利用主进程的事件循环机制。
  • 核心:

    • Fiber 这里可以具象为一个 数据结构:
    class Fiber {
    	constructor(instance) {
    		this.instance = instance
    		// 指向第一个 child 节点
    		this.child = child
    		// 指向父节点
    		this.return = parent
    		// 指向第一个兄弟节点
    		this.sibling = previous
    	}	
    }复制代码
    
    • 链表树遍历算法: 通过 节点保存与映射,便能够随时地进行 停止和重启,这样便能达到实现任务分割的基本前提;

      • 1、首先通过不断遍历子节点,到树末尾;
      • 2、开始通过 sibling 遍历兄弟节点;
      • 3、return 返回父节点,继续执行2;
      • 4、直到 root 节点后,跳出遍历;
    • 任务分割,React 中的渲染更新可以分成两个阶段:

      • reconciliation 阶段: vdom 的数据对比,是个适合拆分的阶段,比如对比一部分树后,先暂停执行个动画调用,待完成后再回来继续比对。
      • Commit 阶段: 将 change list 更新到 dom 上,并不适合拆分,才能保持数据与 UI 的同步。否则可能由于阻塞 UI 更新,而导致数据更新和 UI 不一致的情况。
    • 分散执行: 任务分割后,就可以把小任务单元分散到浏览器的空闲期间去排队执行,而实现的关键是两个新API: requestIdleCallbackrequestAnimationFrame

      • 低优先级的任务交给requestIdleCallback处理,这是个浏览器提供的事件循环空闲期的回调函数,需要 pollyfill,而且拥有 deadline 参数,限制执行事件,以继续切分任务;
      • 高优先级的任务交给requestAnimationFrame处理;
    // 类似于这样的方式
    requestIdleCallback((deadline) => {
        // 当有空闲时间时,我们执行一个组件渲染;
        // 把任务塞到一个个碎片时间中去;
        while ((deadline.timeRemaining() > 0 || deadline.didTimeout) && nextComponent) {
            nextComponent = performWork(nextComponent);
        }
    });复制代码
    
    • 优先级策略: 文本框输入 > 本次调度结束需完成的任务 > 动画过渡 > 交互反馈 > 数据更新 > 不会显示但以防将来会显示的任务

Tips:

Fiber 其实可以算是一种编程思想,在其它语言中也有许多应用(Ruby Fiber)。核心思想是 任务拆分和协同,主动把执行权交给主线程,使主线程有时间空挡处理其他高优先级任务。

当遇到进程阻塞的问题时,任务分割异步调用缓存策略 是三个显著的解决思路。

感谢 @Pengyuan 童鞋,在评论中指出了几个 Fiber 中最核心的理念,感恩!!

  • 总结:

    • 函数式编程其实是一种编程思想,它追求更细的粒度,将应用拆分成一组组极小的单元函数,组合调用操作数据流;
    • 它提倡着 纯函数 / 函数复合 / 数据不可变, 谨慎对待函数内的 状态共享 / 依赖外部 / 副作用;