1335. 工作计划的最低难度
难度:困难
时间:2023/05/21
你需要制定一份 d 天的工作计划表。工作之间存在依赖,要想执行第 i 项工作,你必须完成全部 j 项工作( 0 <= j < i)。
你每天 至少 需要完成一项任务。工作计划的总难度是这 d 天每一天的难度之和,而一天的工作难度是当天应该完成工作的最大难度。
给你一个整数数组 jobDifficulty 和一个整数 d,分别代表工作难度和需要计划的天数。第 i 项工作的难度是 jobDifficulty[i]。
返回整个工作计划的 最小难度 。如果无法制定工作计划,则返回 -1 。
示例 1:
输入:jobDifficulty = [6,5,4,3,2,1], d = 2
输出:7
解释:第一天,您可以完成前 5 项工作,总难度 = 6.
第二天,您可以完成最后一项工作,总难度 = 1.
计划表的难度 = 6 + 1 = 7
示例 2:
输入:jobDifficulty = [9,9,9], d = 4
输出:-1
解释:就算你每天完成一项工作,仍然有一天是空闲的,你无法制定一份能够满足既定工作时间的计划表。
示例 3:
输入:jobDifficulty = [1,1,1], d = 3
输出:3
解释:工作计划为每天一项工作,总难度为 3 。
示例 4:
输入:jobDifficulty = [7,1,7,1,7,1], d = 3
输出:15
示例 5:
输入:jobDifficulty = [11,111,22,222,33,333,44,444], d = 6
输出:843
提示:
1 <= jobDifficulty.length <= 3000 <= jobDifficulty[i] <= 10001 <= d <= 10
解题思路:
将数组分为d段,求每段最大值之和的最小值
将数据分成 d 段,每一段的最小长度为 1 ,最大长度为 size - d + 当前第几段。
最简单直接的方法是,递归枚举每一段的有效数据,然后将所有段的有效数据进行组合,得出最小的和值。比如先枚举第一段可以选择的每一个数据长度,然后取当前数据长度的最大值,将剩余值给第二段,第二段进行第一段的方法,以此类推,得到所有组合,然后取最小值。
class Solution:
def minDifficulty(self, jobDifficulty: List[int], d: int) -> int:
n = len(jobDifficulty)
f = [[inf] * (d + 1) for _ in range(n + 1)]
f[0][0] = 0
for i in range(1, n + 1):
for j in range(1, min(d + 1, i + 1)):
mx = 0
for k in range(i, 0, -1):
mx = max(mx, jobDifficulty[k - 1])
f[i][j] = min(f[i][j], f[k - 1][j - 1] + mx)
return -1 if f[n][d] >= inf else f[n][d]