夯实算法-填充每个节点的下一个右侧节点指针

102 阅读1分钟

题目:填充每个节点的下一个右侧节点指针

给定一个 完美二叉树 ,其所有叶子节点都在同一层,每个父节点都有两个子节点。二叉树定义如下:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL

初始状态下,所有 next 指针都被设置为 NULL

示例 1:

输入: root = [1,2,3,4,5,6,7]
输出: [1,#,2,3,#,4,5,6,7,#]
解释: 给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化的输出按层序遍历排列,同一层节点由 next 指针连接,'#' 标志着每一层的结束。

示例 2:

输入: root = []
输出: []

提示:

  • 树中节点的数量在 [0,212 1][0, 2^{12} - 1] 范围内
  • -1000 <= node.val <= 1000

解题思路

由于每个结点的下一个右侧结点一定和该结点位于同一层,因此只要在同一层的结点之间填充下一个右侧结点指针即可。可以使用层序遍历实现。

层序遍历的方法为从根结点开始依次遍历每一层的结点,同一层的结点的遍历顺序为从左到右。在层序遍历的过程中需要区分不同结点所在的层,确保每一轮访问的结点为同一层的全部结点。

使用队列存储待访问的结点,初始时将根结点入队列。每一轮访问结点之前首先得到队列内的元素个数,然后访问这些结点,并将这些结点的非空子结点入队列。该做法可以确保每一轮访问的结点为同一层的全部结点。

每次访问结点时,将待访问的结点出队列。如果当前访问的结点不是当前层的最后一个结点,则此时的队首元素即为当前结点的下一个右侧结点(注意当前结点已经出队列),将当前结点的下一个右侧结点指针指向队首元素。

遍历结束之后返回根结点,此时二叉树中每个结点的下一个右侧结点指针都被填充。

代码实现

public Node connect(Node root) {
    if (root == null) {
        return root;
    }
    Queue < Node > queue = new ArrayDeque < Node > ();
    queue.offer(root);
    while (!queue.isEmpty()) {
        int size = queue.size();
        for (int i = 0; i < size; i++) {
            Node node = queue.poll();
            if (i < size - 1) {
                node.next = queue.peek();
            }
            if (node.left != null) {
                queue.offer(node.left);
            }
            if (node.right != null) {
                queue.offer(node.right);
            }
        }
    }
    return root;
}

运行结果

Snipaste_2023-05-31_22-25-39.png

复杂度分析

  • 空间复杂度:O(n)
  • 时间复杂度:O(n)

掘金(JUEJIN) 一起分享知识, Keep Learning!