常见的七种查找算法:
注意:代码用Java来写的
数据结构是数据存储的方式,算法是数据计算的方式。所以在开发中,算法和数据结构息息相关。今天的讲义中会涉及部分数据结构的专业名词,如果各位铁粉有疑惑,可以先看一下哥们后面录制的数据结构,再回头看算法。
1. 基本查找
也叫做顺序查找
说明:顺序查找适合于存储结构为数组或者链表。
基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。
示例代码:
public class A01_BasicSearchDemo1 {
public static void main(String[] args) {
//基本查找/顺序查找
//核心:
//从0索引开始挨个往后查找
//需求:定义一个方法利用基本查找,查询某个元素是否存在
//数据如下:{131, 127, 147, 81, 103, 23, 7, 79}
int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};
int number = 82;
System.out.println(basicSearch(arr, number));
}
//参数:
//一:数组
//二:要查找的元素
//返回值:
//元素是否存在
public static boolean basicSearch(int[] arr, int number){
//利用基本查找来查找number在数组中是否存在
for (int i = 0; i < arr.length; i++) {
if(arr[i] == number){
return true;
}
}
return false;
}
}
2. 二分查找
也叫做折半查找
说明:元素必须是有序的,从小到大,或者从大到小都是可以的。
如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。
基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:
-
相等
说明找到了
-
要查找的数据比中间节点小
说明要查找的数字在中间节点左边
-
要查找的数据比中间节点大
说明要查找的数字在中间节点右边
代码示例:
package com.itheima.search;
public class A02_BinarySearchDemo1 {
public static void main(String[] args) {
//二分查找/折半查找
//核心:
//每次排除一半的查找范围
//需求:定义一个方法利用二分查找,查询某个元素在数组中的索引
//数据如下:{7, 23, 79, 81, 103, 127, 131, 147}
int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};
System.out.println(binarySearch(arr, 150));
}
public static int binarySearch(int[] arr, int number){
//1.定义两个变量记录要查找的范围
int min = 0;
int max = arr.length - 1;
//2.利用循环不断的去找要查找的数据
while(true){
if(min > max){
return -1;
}
//3.找到min和max的中间位置
int mid = (min + max) / 2;
//4.拿着mid指向的元素跟要查找的元素进行比较
if(arr[mid] > number){
//4.1 number在mid的左边
//min不变,max = mid - 1;
max = mid - 1;
}else if(arr[mid] < number){
//4.2 number在mid的右边
//max不变,min = mid + 1;
min = mid + 1;
}else{
//4.3 number跟mid指向的元素一样
//找到了
return mid;
}
}
}
}
3. 插值查找
在介绍插值查找之前,先考虑一个问题:
为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?
其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?
二分查找中查找点计算如下:
mid=(low+high)/2, 即mid=low+1/2*(high-low);
我们可以将查找的点改进为如下:
mid=low+(key-a[low])/(a[high]-a[low])*(high-low),
这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
**细节:**对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
代码跟二分查找类似,只要修改一下mid的计算方式即可。
4. 斐波那契查找
在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。
黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。
0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。
在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….
(从第三个数开始,后边每一个数都是前两个数的和)。
然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。
基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法,以黄金分割点来分割数组。
mid 不再代表中值,而是代表了黄金分割点: mid = left + F[k−1] −1
假设表中有 n 个元素,查找过程为取区间中间元素的下标 mid ,对 mid 的关键字与给定值的关键字比较:
-
(1)如果与给定关键字相同,则查找成功,返回在表中的位置;
-
(2)如果给定关键字大,向右查找并减小2个斐波那契区间;
-
(3)如果给定关键字小,向左查找并减小1个斐波那契区间;
-
(4)重复过程,直到找到关键字(成功)或区间为空集(失败)。
通常情况下:
-
返回值,代表下标;
-
返回-1,代表没有找到关键字;
斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可
代码示例:
public class FeiBoSearchDemo {
public static int maxSize = 20;
public static void main(String[] args) {
int[] arr = {1, 8, 10, 89, 1000, 1234};
System.out.println(search(arr, 1234));
}
//斐波那契数列最后一位要比maxsize - 1大
public static int[] getFeiBo() {
int[] arr = new int[maxSize];
arr[0] = 1;
arr[1] = 1;
for (int i = 2; i < maxSize; i++) {
arr[i] = arr[i - 1] + arr[i - 2];
}
return arr;
}
public static int search(int[] arr, int key) {
int low = 0;
int high = arr.length - 1;
//表示斐波那契数分割数的下标值
int index = 0;
int mid = 0;
//调用斐波那契数列
int[] f = getFeiBo();
//获取斐波那契分割数值的下标
while (high > (f[index] - 1)) {
index++;
}
//因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐
int[] temp = Arrays.copyOf(arr, f[index]);
//实际需要使用arr数组的最后一个数来填充不足的部分
for (int i = high + 1; i < temp.length; i++) {
temp[i] = arr[high];
}
//使用while循环处理,找到key值
while (low <= high) {
mid = low + f[index - 1] - 1;
if (key < temp[mid]) {//向数组的前面部分进行查找
high = mid - 1;
/*
对k--进行理解
1.全部元素=前面的元素+后面的元素
2.f[k]=k[k-1]+f[k-2]
因为前面有k-1个元素没所以可以继续分为f[k-1]=f[k-2]+f[k-3]
即在f[k-1]的前面继续查找k--
即下次循环,mid=f[k-1-1]-1
*/
index--;
} else if (key > temp[mid]) {//向数组的后面的部分进行查找
low = mid + 1;
index -= 2;
} else {//找到了
//需要确定返回的是哪个下标
if (mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
}
5. 分块查找
当数据表中的数据元素很多时,可以采用分块查找。
汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找
分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找
分块查找的过程:
- 需要把数据分成N多小块,块与块之间不能有数据重复的交集。
- 给每一块创建对象单独存储到数组当中
- 查找数据的时候,先在数组查,当前数据属于哪一块
- 再到这一块中顺序查找
- 前一块区间的最大值要小于后区间的全部值
代码示例:
package com.itheima.search;
public class A03_BlockSearchDemo {
public static void main(String[] args) {
/*
分块查找
核心思想:
块内无序,块间有序
实现步骤:
1.创建数组blockArr存放每一个块对象的信息
2.先查找blockArr确定要查找的数据属于哪一块
3.再单独遍历这一块数据即可
*/
int[] arr = {16, 5, 9, 12,21, 18,
32, 23, 37, 26, 45, 34,
50, 48, 61, 52, 73, 66};
//创建三个块的对象
Block b1 = new Block(21,0,5);
Block b2 = new Block(45,6,11);
Block b3 = new Block(73,12,17);
//定义数组用来管理三个块的对象(索引表)
Block[] blockArr = {b1,b2,b3};
//定义一个变量用来记录要查找的元素
int number = 37;
//调用方法,传递索引表,数组,要查找的元素
int index = getIndex(blockArr,arr,number);
//打印一下
System.out.println(index);
}
//利用分块查找的原理,查询number的索引
private static int getIndex(Block[] blockArr, int[] arr, int number) {
//1.确定number是在那一块当中
int indexBlock = findIndexBlock(blockArr, number);
if(indexBlock == -1){
//表示number不在数组当中
return -1;
}
//2.获取这一块的起始索引和结束索引 --- 30
// Block b1 = new Block(21,0,5); ---- 0
// Block b2 = new Block(45,6,11); ---- 1
// Block b3 = new Block(73,12,17); ---- 2
int startIndex = blockArr[indexBlock].getStartIndex();
int endIndex = blockArr[indexBlock].getEndIndex();
//3.遍历
for (int i = startIndex; i <= endIndex; i++) {
if(arr[i] == number){
return i;
}
}
return -1;
}
//定义一个方法,用来确定number在哪一块当中
public static int findIndexBlock(Block[] blockArr,int number){ //100
//从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的
for (int i = 0; i < blockArr.length; i++) {
if(number <= blockArr[i].getMax()){
return i;
}
}
return -1;
}
}
class Block{
private int max;//最大值
private int startIndex;//起始索引
private int endIndex;//结束索引
public Block() {
}
public Block(int max, int startIndex, int endIndex) {
this.max = max;
this.startIndex = startIndex;
this.endIndex = endIndex;
}
/**
* 获取
* @return max
*/
public int getMax() {
return max;
}
/**
* 设置
* @param max
*/
public void setMax(int max) {
this.max = max;
}
/**
* 获取
* @return startIndex
*/
public int getStartIndex() {
return startIndex;
}
/**
* 设置
* @param startIndex
*/
public void setStartIndex(int startIndex) {
this.startIndex = startIndex;
}
/**
* 获取
* @return endIndex
*/
public int getEndIndex() {
return endIndex;
}
/**
* 设置
* @param endIndex
*/
public void setEndIndex(int endIndex) {
this.endIndex = endIndex;
}
public String toString() {
return "Block{max = " + max + ", startIndex = " + startIndex + ", endIndex = " + endIndex + "}";
}
}
6. 哈希查找
哈希查找是分块查找的进阶版,适用于数据一边添加一边查找的情况。
一般是数组 + 链表的结合体或者是数组+链表 + 红黑树的结合体
在课程中,为了让大家方便理解,所以规定:
- 数组的0索引处存储1~100
- 数组的1索引处存储101~200
- 数组的2索引处存储201~300
- 以此类推
但是实际上,我们一般不会采取这种方式,因为这种方式容易导致一块区域添加的元素过多,导致效率偏低。
更多的是先计算出当前数据的哈希值,用哈希值跟数组的长度进行计算,计算出应存入的位置,再挂在数组的后面形成链表,如果挂的元素太多而且数组长度过长,我们也会把链表转化为红黑树,进一步提高效率。
具体的过程,大家可以参见B站阿玮讲解课程:从入门到起飞。在集合章节详细讲解了哈希表的数据结构。全程采取动画形式讲解,让大家一目了然。
在此不多做阐述。
7. 树表查找
本知识点涉及到数据结构:树。
建议先看一下后面阿玮讲解的数据结构,再回头理解。
基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree),具有下列性质的二叉树:
1)若任意节点左子树上所有的数据,均小于本身;
2)若任意节点右子树上所有的数据,均大于本身;
二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。
不同形态的二叉查找树如下图所示:
基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。
具体细节大家可以参见B站阿玮讲解课程:从入门到起飞。在集合章节详细讲解了树数据结构。全程采取动画形式讲解,让大家一目了然。
在此不多做阐述。
不管是二叉查找树,还是平衡二叉树,还是红黑树,查找的性能都比较高
十大排序算法:
1. 冒泡排序
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。
它重复的遍历过要排序的数列,一次比较相邻的两个元素,如果他们的顺序错误就把他们交换过来。
这个算法的名字由来是因为越大的元素会经由交换慢慢"浮"到最后面。
当然,大家可以按照从大到小的方式进行排列。
1.1 算法步骤
- 相邻的元素两两比较,大的放右边,小的放左边
- 第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推
- 如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以
1.2 动图演示
1.3 代码示例
public class A01_BubbleDemo {
public static void main(String[] args) {
/*
冒泡排序:
核心思想:
1,相邻的元素两两比较,大的放右边,小的放左边。
2,第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推。
3,如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以。
*/
//1.定义数组
int[] arr = {2, 4, 5, 3, 1};
//2.利用冒泡排序将数组中的数据变成 1 2 3 4 5
//外循环:表示我要执行多少轮。 如果有n个数据,那么执行n - 1 轮
for (int i = 0; i < arr.length - 1; i++) {
//内循环:每一轮中我如何比较数据并找到当前的最大值
//-1:为了防止索引越界
//-i:提高效率,每一轮执行的次数应该比上一轮少一次。
for (int j = 0; j < arr.length - 1 - i; j++) {
//i 依次表示数组中的每一个索引:0 1 2 3 4
if(arr[j] > arr[j + 1]){
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
printArr(arr);
}
private static void printArr(int[] arr) {
//3.遍历数组
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
2. 选择排序
2.1 算法步骤
- 从0索引开始,跟后面的元素一一比较
- 小的放前面,大的放后面
- 第一次循环结束后,最小的数据已经确定
- 第二次循环从1索引开始以此类推
- 第三轮循环从2索引开始以此类推
- 第四轮循环从3索引开始以此类推。
2.2 动图演示
public class A02_SelectionDemo {
public static void main(String[] args) {
/*
选择排序:
1,从0索引开始,跟后面的元素一一比较。
2,小的放前面,大的放后面。
3,第一次循环结束后,最小的数据已经确定。
4,第二次循环从1索引开始以此类推。
*/
//1.定义数组
int[] arr = {2, 4, 5, 3, 1};
//2.利用选择排序让数组变成 1 2 3 4 5
/* //第一轮:
//从0索引开始,跟后面的元素一一比较。
for (int i = 0 + 1; i < arr.length; i++) {
//拿着0索引跟后面的数据进行比较
if(arr[0] > arr[i]){
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
}
}*/
//最终代码:
//外循环:几轮
//i:表示这一轮中,我拿着哪个索引上的数据跟后面的数据进行比较并交换
for (int i = 0; i < arr.length -1; i++) {
//内循环:每一轮我要干什么事情?
//拿着i跟i后面的数据进行比较交换
for (int j = i + 1; j < arr.length; j++) {
if(arr[i] > arr[j]){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
}
printArr(arr);
}
private static void printArr(int[] arr) {
//3.遍历数组
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
3. 插入排序
插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过创建有序序列和无序序列,然后再遍历无序序列得到里面每一个数字,把每一个数字插入到有序序列中正确的位置。
插入排序在插入的时候,有优化算法,在遍历有序序列找正确位置时,可以采取二分查找
3.1 算法步骤
将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。
遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。
N的范围:0~最大索引
3.2 动图演示
package com.itheima.mysort;
public class A03_InsertDemo {
public static void main(String[] args) {
/*
插入排序:
将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。
遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。
N的范围:0~最大索引
*/
int[] arr = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};
//1.找到无序的哪一组数组是从哪个索引开始的。 2
int startIndex = -1;
for (int i = 0; i < arr.length; i++) {
if(arr[i] > arr[i + 1]){
startIndex = i + 1;
break;
}
}
//2.遍历从startIndex开始到最后一个元素,依次得到无序的哪一组数据中的每一个元素
for (int i = startIndex; i < arr.length; i++) {
//问题:如何把遍历到的数据,插入到前面有序的这一组当中
//记录当前要插入数据的索引
int j = i;
while(j > 0 && arr[j] < arr[j - 1]){
//交换位置
int temp = arr[j];
arr[j] = arr[j - 1];
arr[j - 1] = temp;
j--;
}
}
printArr(arr);
}
private static void printArr(int[] arr) {
//3.遍历数组
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}
4. 快速排序
快速排序是由东尼·霍尔所发展的一种排序算法。
快速排序又是一种分而治之思想在排序算法上的典型应用。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!
它是处理大数据最快的排序算法之一了。
4.1 算法步骤
- 从数列中挑出一个元素,一般都是左边第一个数字,称为 "基准数";
- 创建两个指针,一个从前往后走,一个从后往前走。
- 先执行后面的指针,找出第一个比基准数小的数字
- 再执行前面的指针,找出第一个比基准数大的数字
- 交换两个指针指向的数字
- 直到两个指针相遇
- 将基准数跟指针指向位置的数字交换位置,称之为:基准数归位。
- 第一轮结束之后,基准数左边的数字都是比基准数小的,基准数右边的数字都是比基准数大的。
- 把基准数左边看做一个序列,把基准数右边看做一个序列,按照刚刚的规则递归排序
4.2 动图演示
package com.itheima.mysort;
import java.util.Arrays;
public class A05_QuickSortDemo {
public static void main(String[] args) {
/*
int的范围:
System.out.println(Integer.MAX_VALUE);
System.out.println(Integer.MIN_VALUE);
*/
/*
快速排序:
第一轮:以0索引的数字为基准数,确定基准数在数组中正确的位置。
比基准数小的全部在左边,比基准数大的全部在右边。
后面以此类推。
start找左边大于基准数
end找右边小于基准数
*/
int[] arr = {1,1, 6, 2, 7, 9, 3, 4, 5, 1,10, 8};
//int[] arr = new int[1000000];
/* Random r = new Random();
for (int i = 0; i < arr.length; i++) {
arr[i] = r.nextInt();
}*/
//获取开始时间
long start = System.currentTimeMillis();
quickSort(arr, 0, arr.length - 1);
//获取排序结束时间
long end = System.currentTimeMillis();
//计算排序用时
System.out.println(end - start);//149
System.out.println(Arrays.toString(arr));
//课堂练习:
//我们可以利用相同的办法去测试一下,选择排序,冒泡排序以及插入排序运行的效率
//得到一个结论:快速排序真的非常快。
/* for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}*/
}
/*
* 参数一:我们要排序的数组
* 参数二:要排序数组的起始索引
* 参数三:要排序数组的结束索引
* */
public static void quickSort(int[] arr, int i, int j) {
//定义两个变量记录要查找的范围
int start = i;
int end = j;
if(start > end){
//递归的出口
return;
}
//记录基准数
int baseNumber = arr[i];
//利用循环找到要交换的数字
while(start != end){
//利用end,从后往前开始找,找比基准数小的数字
//int[] arr = {1, 6, 2, 7, 9, 3, 4, 5, 10, 8};
while(true){
if(end <= start || arr[end] < baseNumber){
break;
}
end--;
}
//利用start,从前往后找,找比基准数大的数字
while(true){
if(end <= start || arr[start] > baseNumber){
break;
}
start++;
}
//把end和start指向的元素进行交换
int temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
}
//当start和end指向了同一个元素的时候,那么上面的循环就会结束
//表示已经找到了基准数在数组中应存入的位置
//基准数归位
//就是拿着这个范围中的第一个数字,跟start指向的元素进行交换
int temp = arr[i];
arr[i] = arr[start];
arr[start] = temp;
//确定6左边的范围,重复刚刚所做的事情
quickSort(arr,i,start - 1);
//确定6右边的范围,重复刚刚所做的事情
quickSort(arr,start + 1,j);
}
}
Java的常见算法的API-Arrays
Arrays 操作数组的工具类
| 方法名 | 说明 |
|---|---|
| public static String toString(数组) | 把数组拼接成一个字符串 |
| public static int binarySearch(数组,查找的元素) | 二分查找法查找元素 |
| public static int[] copyOf(原数组,新数组长度) | 拷贝数组 |
| public static int[] coptOfRange(原数组,起始索引,结束索引) | 拷贝数组(指定范围) |
| public static void fill(数组,元素) | 填充数组 |
| public static void sort(数组) | 按照默认方式进行数组排序 |
| public static void sort(数组,排序规则) | 按照指定的规则排序 |
1. toString
//toString: 将数组变成字符串
int[] arr = {1,2,3,4,5,6,7,8,9,10};
System.out.println(Arrays.toString(arr));
2. binarySearch
//binarySearch: 二分查找法查找元素
//细节1:二分查找的前提:数组中的元素必须是有序,数组中的元素必须是升序的
//细节2:如果要查找的元素是存在的,那么返回的是真实的索引
//但是,如果要查找的元素是不存在的,返回的是 -插入点 - 1
//疑问:为什么要减1呢?
//解释:如果此时,我现在要查找数字0,那么如果返回的值是 -插入点,就会出现问题了。
//如果要查找数字0,此时0是不存在的,但是按照上面的规则 -插入点,应该就是 -0
//为了避免这样的情况,Java在这个基础上又减一。
int[] arr = {1,2,3,4,5,6,7,8,9,10};
System.out.println(Arrays.binarySearch(arr,10));
System.out.println(Arrays.binarySearch(arr,2));
System.out.println(Arrays.binarySearch(arr,20));
3. copyOf
//copyOf:拷贝数组
//参数一:老数组
//参数二:新数组的长度
//方法的底层会根据第二个参数来创建新的数组
//如果新数组的长度是小于老数组的长度,会部分拷贝
//如果新数组的长度是等于老数组的长度,会完全拷贝
//如果新数组的长度是大于老数组的长度,会补上默认初始值(0)
int[] arr = {1,2,3,4,5,6,7,8,9,10};
int[] newArr1 = Arrays.copyOf(arr,10);
System.out.println(Arrays.toString(newArr1));//[1,2,3,4,5,6,7,8,9,10]
4. copyOfRange
//copyOfRange:拷贝数组(指定范围)
//细节:包头不包尾,包左不包右
int[] arr = {1,2,3,4,5,6,7,8,9,10};
int[] newArr2 = Arrays.copyOfRange(arr,0,9);
System.out.println(Arrays.toString(newArr2));//[1,2,3,4,5,6,7,8,9]
5. fill
//fill:填充数组
int[] arr = {1,2,3,4,5,6,7,8,9,10};
Arays.fill(arr,100);
System.out.println(Arrays.toString(arr));//[100,100,100,100,100,100,100,100,100,100]
6. sort
public class Test{
public static void main(Sting[] args){
/*
public static void sort(数组,排序规则) 按照指定的规则排序
参数一:要排列的数组
参数二:排列的规则
细节:
只能给引用数据类型的数组进行排序
如果数组是基本数据类型的,需要变成其对应的包装类
*/
Integer[] arr = {2,3,1,5,6,7,8,4,9};
//第二个参数是一个接口,所以我们在调用方法的时候,需要传递这个接口的实现类对象,作为排序的规则。
//但是这个实现类,我只要使用一次,所以就没有必要单独的去写一个类,直接采取匿名内部类的方式就可以了
//底层原理:
//利用插入排序 + 二分查找的方式进行排序的。
//默认把0索引的数据当做是有序的序列,1索引到最后认为是无序的序列。
//遍历无序的序列得到里面的每一个元素,假设当前遍历得到的元素是A元素
//把A往有序序列中进行插入,在插入的时候,是利用二分查找确定A元素的插入点。
//拿着A元素,跟插入点的元素进行比较,比较的规则就是compare方法的方法体
//如果方法的返回值是负数,拿着A继续跟前面的数据进行比较
//如果方法的返回值是正数,拿着A继续跟后面的数据进行比较
//如果方法的返回值是0,也拿着A跟后面的数据进行比较
//直到能确定A的最终位置为止。
//compare方法的形式参数:
//参数一 o1:表示在无序序列中,遍历得到的每一个元素
//参数二 o2:有序序列中的元素
//返回值:
//负数:表示当前要插入的元素是小的,放在前面
//整数:表示当前要插入的元素是大的,放在后面
//0:表示当前要插入的元素跟现在的元素比是一样的也会放在后面
//简单理解:
//o1 - o2 :升序排列
//o2 - o1 :降序排列
Arrays.sort(arr,new Comparator<Integer>(){
@Override
public int compare(Integer o1,Integer o2){
return o2-o1;
}
});
}
Lambda表达式
函数式编程
- 函数式编程(Functional programming)是一种思想特点。
- 函数式编程思想,忽略面向对象的复杂语法,强调做什么,而不是谁去做。
- Lambda表达式就是函数式思想的体现。
Lambda表达式的标准格式
Lambda表达式时JDK 8开始后的一种新语法形式。
() ->{
}
- ()对应着方法的形参
- -> 固定格式
- {} 对应着方法的方法体
注意点:
- Lambda表达式可以用来简化匿名内部类的书写
- Lambda表达式字只能简化函数式接口的匿名内部类的写法
- 函数式接口:有且仅有一个抽象方法的接口叫做函数式接口,接口上方可以加@Functionalinterface注解
Lambda表达式的省略写法
省略核心:可推导,可省略
Lambda的省略规则:
- 参数类型可以省略不写。
- 如果只有一个参数,参数类型可以省略,同时()也可以省略。
- 如果Lambda表达式的方法体只有一行,大括号,分号,return可以省略不写,需要同时省略。
总结:
-
Lambda表达式的基本作用?
简化函数式接口的匿名内部类的写法
-
Lambda表达式有什么使用前体?
必须是接口的匿名内部类,接口中只能有一个抽象方法
-
Lambda的好处?
Lambda是一个匿名函数,我们可以把Lambda表达式理解为是一段可以传递的代码,它可以写出更简洁,更灵活的代码,作为一种更紧凑的代码风格,使Java语言表达能力得到了提升。
import java.util.Arrays;
import java.util.Comparator;
public class Test {
public static void main(String[] args) {
String[] arr = {"a", "aaaa", "aaa", "aa"};
//如果以后我们要把数组中的数据按照指定的方式进行排列,就需要用到sort方法,而且要指定排序的规则
//匿名内部类形式
/*Arrays.sort(arr, new Comparator<String>() {
@Override
public int compare(String o1, String o2) {
//字符串的长度进行排序
return o1.length() - o2.length();
}
});*/
//Lambda 完整格式
/*Arrays.sort(arr, (String o1, String o2) -> {
//字符串的长度进行排序
return o1.length() - o2.length();
}
);*/
//Lambda 简写格式
//小括号:数据类型可以省略,如果参数只有一个,小括号还可以省略
//大括号:如果方法体只有一行,return,分号,大括号都可以省略
Arrays.sort(arr, (o1, o2) -> o1.length() - o2.length());
//打印数组
System.out.println(Arrays.toString(arr));//[a, aa, aaa, aaaa]
}
}
五道经典算法题
第一道:
import java.util.Arrays;
import java.util.Comparator;
public class Test {
public static void main(String[] args) {
/*定义数组并存储一些女朋友对象,利用Arrays中的sort分法进行排产
要求1:属性有姓名、年龄、身高。
要求2:按照年龄的大小进行排序,年龄
一样,按照味属排形,身高一样按照姓名的字付进行排序。
(姓名中不要有中文或特殊字符,会涉及到后面的知识)*/
//1.创建四个女朋友对象
GirldFriend gf1 = new GirldFriend("xiaoshishi", 18, 1.67);
GirldFriend gf2 = new GirldFriend("xiaodandan", 19, 1.72);
GirldFriend gf3 = new GirldFriend("xiaohuihui", 19, 1.78);
GirldFriend gf4 = new GirldFriend("abd", 19, 1.78);
//2.定义数组存储女朋友的信息
GirldFriend[] arr = {gf1, gf2, gf3, gf4};
//3.利用Arrays中的sort方法进行排序
//匿名内部类
/*Arrays.sort(arr, new Comparator<GirldFriend>() {
@Override
public int compare(GirldFriend o1, GirldFriend o2) {
double temp = o1.getAge() - o2.getAge();
temp = temp == 0 ? o1.getHeight() - o2.getHeight() : temp;
temp = temp == 0 ? o1.getName().compareTo(o2.getName()) : temp;
if(temp>0){
return 1;
}else if(temp<0){
return -1;
}else {
return 0;
}
}
});*/
//lambda表达式
Arrays.sort(arr, (o1, o2) -> {
double temp = o1.getAge() - o2.getAge();
temp = temp == 0 ? o1.getHeight() - o2.getHeight() : temp;
temp = temp == 0 ? o1.getName().compareTo(o2.getName()) : temp;
if (temp > 0) {
return 1;
} else if (temp < 0) {
return -1;
} else {
return 0;
}
}
);
//4.展示一下数组中的内容
System.out.println(Arrays.toString(arr));
}
}
第二道:
分析:
public class Test {
public static void main(String[] args) {
/* 有一个很有名的数学逻辑题叫做不死神兔问题,有一对兔子,从出生后第三个月起每个月都生一对兔子,
小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问第十二个月的兔子对数为多少?
1月:1
2月:1
3月:2
4月:3
5月:5
6月:8
特点:从第三个数据开始,是前两个数据和(斐波那契数列)
*/
//求解1:
/*//1.创建一个长度为12的数组
int[] arr =new int[12];
//2.手动给0索引和1索引的数据进行赋值
arr[0] = 1;
arr[1] = 1;
//3.利用循环给剩余的数据进行赋值
for (int i = 2; i < arr.length; i++) { //因为0和1索引已经有值了,所以从2索引开始
arr[i] = arr[i-1]+arr[i-2];
}
//1 1 2 3 5 8....
//4.获取最大索引上的数据即可
System.out.println(arr[11]);//144*/
//求解2:
//递归的方式去完成
//1. 递归的出口
//2. 找到递归的规模
//Fn(12) = Fn(11) + Fn(10);
//Fn(11) = Fn(10) + Fn(9);
//Fn(10) = Fn(9) + Fn(8);
//...
//Fn(3) = Fn(2) + Fn(1);
//Fn(2) = 1;
//Fn(1) = 1;
System.out.println(getSum(12));
}
public static int getSum(int month) {
if (month == 1 || month == 2) {
return 1;
} else {
return getSum(month - 1) + getSum(month - 2);
}
}
}
第三道:
public class Test {
public static void main(String[] args) {
/*
有一堆桃子,猴子第一天吃了其中的一半,并多吃里一个!
以后每天猴子都吃当前剩下来的易班,然后再多吃一个,
第10天的时候(还没有吃),发现只剩下一个桃子了,请问,最初总共多少个桃子?
day10: 1
day9: (day10 + 1) * 2 = 4
day8: (day9 + 1) * 2 = 10
公式推理:day9/2 -1 = day10
(day10 + 1) = day9
(day10 + 1) * 2 = day9
1.出口
day ==10 剩下1
2.规律
每一天的桃子数量都是后一天数量加1,承以2
反向递归
*/
System.out.println(getCount(1));//1534
}
public static int getCount(int day) {
if (day <= 0 || day >= 11) {
System.out.println("当前时间错误");
return -1;
}
//递归出口
if (day == 10) {
return 1;
}
//书写规律
//每一天的桃子数量都是后一天数量加1,乘以2
return (getCount(day + 1) + 1) * 2;
}
}
第四道:
分析:
public class Test {
public static void main(String[] args) {
/*
可爱的小明特别喜欢爬楼梯,他有的时候一次爬一个台阶,有的时候一次爬两个台阶。
如果这个楼梯有100个台阶,小明一共有多少种爬法呢?
运算结果:
1层台阶 1种爬法
2层台阶 2种爬法
7层台阶 21种爬法
20层台阶的爬法 = 19个台阶的爬法 + 18个台阶的爬法
不用+17个台阶的爬法,因为19个台阶的爬法和18个台阶的爬法已经包含17个台阶的爬法
*/
System.out.println(getCount(20));//10946
}
public static int getCount(int n){
if(n==1){
return 1;
}
if(n == 2){
return 2;
}
return getCount(n-1)+getCount(n-2);
}
}
第五道:
可爱的小明特别喜欢爬楼梯,他有的时候一次爬一个台阶,有的时候一次爬两个台阶,有的时候一次爬三个台阶。 如果这个楼梯有100个台阶,小明一共有多少种爬法呢?
public class Test {
public static void main(String[] args) {
/*
可爱的小明特别喜欢爬楼梯,他有的时候一次爬一个台阶,有的时候一次爬两个台阶,有的时候一次爬三个台阶。
如果这个楼梯有100个台阶,小明一共有多少种爬法呢?
运算结果:
1层台阶 1种爬法
2层台阶 2种爬法
3层台阶 3种爬法
7层台阶 37种爬法
20层台阶的爬法 = 19个台阶的爬法 + 18个台阶的爬法 + 17个台阶爬法
*/
System.out.println(getCount(20));//101902
}
public static int getCount(int n) {
if (n == 1) {
return 1;
}
if (n == 2) {
return 2;
}
if(n == 3){
return 3;
}
return getCount(n - 1) + getCount(n - 2)+ getCount(n-3);
}
}