1 Redis 阻塞点
Redis 实例在运行时,要和许多对象进行交互,这些不同的交互就会涉及不同的操作,下面我们来看看和 Redis 实例交互的对象,以及交互时会发生的操作。
1.1 与客户端交互的阻塞点
1.1.1 集合全量查询/聚合操作
网络 IO 有时候会比较慢,但是 Redis 使用了 IO 多路复用机制,避免了主线程一直处在等待网络连接或请求到来的状态,所以,网络 IO 不是导致 Redis 阻塞的因素。
键值对的增删改查操作是 Redis 和客户端交互的主要部分,也是 Redis 主线程执行的主要任务。所以,复杂度高的增删改查操作肯定会阻塞 Redis。
那么,怎么判断操作复杂度是不是高呢?
这里有一个最基本的标准,就是看操作的复杂度是否为 O(N)。Redis 中涉及集合的操作复杂度通常为 O(N),我们要在使用时重视起来。例如集合元素全量查询操作 HGETALL、SMEMBERS,以及集合的聚合统计操作,例如求交、并和差集。这些操作可以作为 Redis 的第一个阻塞点:集合全量查询和聚合操作。
1.1.2 删除Key
删除操作的本质是要释放键值对占用的内存空间。你可不要小瞧内存的释放过程。释放内存只是第一步,为了更加高效地管理内存空间,在应用程序释放内存时,操作系统需要把释放掉的内存块插入一个空闲内存块的链表,以便后续进行管理和再分配。这个过程本身需要一定时间,而且会阻塞当前释放内存的应用程序,所以,如果一下子释放了大量内存,空闲内存块链表操作时间就会增加,相应地就会造成 Redis 主线程的阻塞。
bigkey 删除操作就是 Redis 的第二个阻塞点。删除操作对 Redis 实例性能的负面影响很大,而且在实际业务开发时容易被忽略,所以一定要重视它。
既然频繁删除键值对都是潜在的阻塞点了,那么,在 Redis 的数据库级别操作中,清空数据库(例如 FLUSHDB 和 FLUSHALL 操作)必然也是一个潜在的阻塞风险,因为它涉及到删除和释放所有的键值对。所以,这就是 Redis 的第三个阻塞点:清空数据库。
1.2 和磁盘交互的阻塞点
幸运的是,Redis 开发者早已认识到磁盘 IO 会带来阻塞,所以就把 Redis 进一步设计为采用子进程的方式生成 RDB 快照文件,以及执行 AOF 日志重写操作。这样一来,这两个操作由子进程负责执行,慢速的磁盘 IO 就不会阻塞主线程了。
但是,Redis 直接记录 AOF 日志时,会根据不同的写回策略对数据做落盘保存。一个同步写磁盘的操作的耗时大约是 1~2ms,如果有大量的写操作需要记录在 AOF 日志中,并同步写回的话,就会阻塞主线程了。这就得到了Redis 的第四个阻塞点了:AOF 日志同步写。
1.3 主从节点交互时的阻塞点
在主从集群中,主库需要生成 RDB 文件,并传输给从库。主库在复制的过程中,创建和传输 RDB 文件都是由子进程来完成的,不会阻塞主线程。但是,对于从库来说,它在接收了 RDB 文件后,需要使用 FLUSHDB 命令清空当前数据库,这就正好撞上了刚才我们分析的第三个阻塞点。
此外,从库在清空当前数据库后,还需要把 RDB 文件加载到内存,这个过程的快慢和 RDB 文件的大小密切相关,RDB 文件越大,加载过程越慢,所以,加载 RDB 文件就成为了 Redis 的第五个阻塞点。
1.4 切片集群实例交互时的阻塞点
如果你使用了 Redis Cluster 方案,而且同时正好迁移的是 bigkey 的话,就会造成主线程的阻塞,因为 Redis Cluster 使用了同步迁移。
2 异步执行
在分析阻塞式操作的异步执行的可行性之前,我们先来了解下异步执行对操作的要求。如果一个操作能被异步执行,就意味着,它并不是 Redis 主线程的关键路径上的操作。我再解释下关键路径上的操作是啥。这就是说,客户端把请求发送给 Redis 后,等着 Redis 返回数据结果的操作。
对于 Redis 的五大阻塞点来说,除了“集合全量查询和聚合操作”和“从库加载 RDB 文件”,其他三个阻塞点涉及的操作都不在关键路径上,所以,我们可以使用 Redis 的异步子线程机制来实现 bigkey 删除,清空数据库,以及 AOF 日志同步写。
2.1 异步执行机制
Redis 主线程启动后,会使用操作系统提供的 pthread_create 函数创建 3 个子线程,分别由它们负责 AOF 日志写操作、键值对删除以及文件关闭的异步执行。
主线程通过一个链表形式的任务队列和子线程进行交互。当收到键值对删除和清空数据库的操作时,主线程会把这个操作封装成一个任务,放入到任务队列中,然后给客户端返回一个完成信息,表明删除已经完成。但实际上,这个时候删除还没有执行,等到后台子线程从任务队列中读取任务后,才开始实际删除键值对,并释放相应的内存空间。因此,我们把这种异步删除也称为惰性删除(lazy free)。此时,删除或清空操作不会阻塞主线程,这就避免了对主线程的性能影响。
和惰性删除类似,当 AOF 日志配置成 everysec 选项后,主线程会把 AOF 写日志操作封装成一个任务,也放到任务队列中。后台子线程读取任务后,开始自行写入 AOF 日志,这样主线程就不用一直等待 AOF 日志写完了。
注意 这里有个地方需要你注意一下,异步的键值对删除和数据库清空操作是 Redis 4.0 后提供的功能。
3 Redis变慢
3.1 衡量变慢的指标
如何判断 Redis 是不是真的变慢了。基于当前环境下的Redis 基线性能做判断。所谓的基线性能呢,也就是一个系统在低压力、无干扰下的基本性能,这个性能只由当前的软硬件配置决定。
你可能会问,具体怎么确定基线性能呢?有什么好方法吗?
实际上,从 2.8.7 版本开始,redis-cli 命令提供了–intrinsic-latency 选项,可以用来监测和统计测试期间内的最大延迟,这个延迟可以作为 Redis 的基线性能。其中,测试时长可以用–intrinsic-latency 选项的参数来指定。
举个例子,比如说,我们运行下面的命令,该命令会打印 120 秒内监测到的最大延迟。可以看到,这里的最大延迟是 119 微秒,也就是基线性能为 119 微秒。一般情况下,运行 120 秒就足够监测到最大延迟了,所以,我们可以把参数设置为 120。
./redis-cli --intrinsic-latency 120
Max latency so far: 17 microseconds.
Max latency so far: 44 microseconds.
Max latency so far: 94 microseconds.
Max latency so far: 110 microseconds.
Max latency so far: 119 microseconds.
36481658 total runs (avg latency: 3.2893 microseconds / 3289.32 nanoseconds per run).
Worst run took 36x longer than the average latency.
一般来说,你要把运行时延迟和基线性能进行对比,如果你观察到的 Redis 运行时延迟是其基线性能的 2 倍及以上,就可以认定 Redis 变慢了。
3.2 变慢的原因
3.2.1 Redis自身特性
首先,我们来学习下 Redis 提供的键值对命令操作对延迟性能的影响。我重点介绍两类关键操作:慢查询命令和过期 key 操作。
3.2.1.1 慢查询
当你发现 Redis 性能变慢时,可以通过 Redis 日志,或者是 latency monitor 工具,查询变慢的请求,根据请求对应的具体命令以及官方文档,确认下是否采用了复杂度高的慢查询命令。如果的确有大量的慢查询命令,有两种处理方式:
- 用其他高效命令代替。比如说,如果你需要返回一个 SET 中的所有成员时,不要使用 SMEMBERS 命令,而是要使用 SSCAN 多次迭代返回,避免一次返回大量数据,造成线程阻塞。
- 当你需要执行排序、交集、并集操作时,可以在客户端完成,而不要用 SORT、SUNION、SINTER 这些命令,以免拖慢 Redis 实例。当然,如果业务逻辑就是要求使用慢查询命令,那你得考虑采用性能更好的 CPU,更快地完成查询命令,避免慢查询的影响。
- 因为 KEYS 命令需要遍历存储的键值对,所以操作延时高。如果你不了解它的实现而使用了它,就会导致 Redis 性能变慢。所以,KEYS 命令一般不被建议用于生产环境中。
3.2.1.2 过期key
Redis 键值对的 key 可以设置过期时间。默认情况下,Redis 每 100 毫秒会删除一些过期 key,具体的算法如下:
- 采样
ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP个数的 key,并将其中过期的 key 全部删除; - 如果超过 25% 的 key 过期了,则重复删除的过程,直到过期 key 的比例降至 25% 以下。
ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP 是 Redis 的一个参数,默认是 20,那么,一秒内基本有 200 个过期 key 会被删除。这一策略对清除过期 key、释放内存空间很有帮助。如果每秒钟删除 200 个过期 key,并不会对 Redis 造成太大影响。
但是,如果触发了上面这个算法的第二条,Redis 就会一直删除以释放内存空间。注意,删除操作是阻塞的(Redis 4.0 后可以用异步线程机制来减少阻塞影响)。所以,一旦该条件触发,Redis 的线程就会一直执行删除,这样一来,就没办法正常服务其他的键值操作了,就会进一步引起其他键值操作的延迟增加,Redis 就会变慢。
那么,算法的第二条是怎么被触发的呢?其中一个重要来源,就是频繁使用带有相同时间参数的 EXPIREAT 命令设置过期 key,这就会导致,在同一秒内有大量的 key 同时过期。
3.2.2 文件系统 AOF模式
3.2.2.1 写回策略
Redis 会采用 AOF 日志或 RDB 快照。其中,AOF 日志提供了三种日志写回策略:no、everysec、always。这三种写回策略依赖文件系统的两个系统调用完成,也就是 write 和 fsync。
- write 只要把日志记录写到内核缓冲区,就可以返回了,并不需要等待日志实际写回到磁盘
- fsync 需要把日志记录写回到磁盘后才能返回,时间较长。下面这张表展示了三种写回策略所执行的系统调用。
当写回策略配置为 everysec 和 always 时,Redis 需要调用 fsync 把日志写回磁盘。但是,这两种写回策略的具体执行情况还不太一样。
- 在使用 everysec 时,Redis 允许丢失一秒的操作记录,所以,Redis 主线程并不需要确保每个操作记录日志都写回磁盘。而且,fsync 的执行时间很长,如果是在 Redis 主线程中执行 fsync,就容易阻塞主线程。所以,当写回策略配置为 everysec 时,Redis 会使用后台的子线程异步完成 fsync 的操作
- always 策略来说,Redis 需要确保每个操作记录日志都写回磁盘,如果用后台子线程异步完成,主线程就无法及时地知道每个操作是否已经完成了,这就不符合 always 策略的要求了。所以,always 策略并不使用后台子线程来执行。
3.2.2.2 阻塞点
在使用 AOF 日志时,为了避免日志文件不断增大,Redis 会执行 AOF 重写,生成体量缩小的新的 AOF 日志文件。AOF 重写本身需要的时间很长,也容易阻塞 Redis 主线程,所以,Redis 使用子进程来进行 AOF 重写。
但是,这里有一个潜在的风险点:AOF 重写会对磁盘进行大量 IO 操作,同时,fsync 又需要等到数据写到磁盘后才能返回,所以,当 AOF 重写的压力比较大时,就会导致 fsync 被阻塞。虽然 fsync 是由后台子线程负责执行的,但是,主线程会监控 fsync 的执行进度。当主线程使用后台子线程执行了一次 fsync,需要再次把新接收的操作记录写回磁盘时,如果主线程发现上一次的 fsync 还没有执行完,那么它就会阻塞。所以,如果后台子线程执行的 fsync 频繁阻塞的话(比如 AOF 重写占用了大量的磁盘 IO 带宽),主线程也会阻塞,导致 Redis 性能变慢。
3.2.3 操作系统
3.2.3.1 swap
内存 swap 是操作系统里将内存数据在内存和磁盘间来回换入和换出的机制,涉及到磁盘的读写,所以,一旦触发 swap,无论是被换入数据的进程,还是被换出数据的进程,其性能都会受到慢速磁盘读写的影响。
Redis 是内存数据库,内存使用量大,如果没有控制好内存的使用量,或者和其他内存需求大的应用一起运行了,就可能受到 swap 的影响,而导致性能变慢。这一点对于 Redis 内存数据库而言,显得更为重要:正常情况下,Redis 的操作是直接通过访问内存就能完成,一旦 swap 被触发了,Redis 的请求操作需要等到磁盘数据读写完成才行。而且,和我刚才说的 AOF 日志文件读写使用 fsync 线程不同,swap 触发后影响的是 Redis 主 IO 线程,这会极大地增加 Redis 的响应时间。
3.2.3.2 内存大页
Linux 内核从 2.6.38 开始支持内存大页机制,该机制支持 2MB 大小的内存页分配,而常规的内存页分配是按 4KB 的粒度来执行的。很多人都觉得:“Redis 是内存数据库,内存大页不正好可以满足 Redis 的需求吗?而且在分配相同的内存量时,内存大页还能减少分配次数,不也是对 Redis 友好吗?”
其实,系统的设计通常是一个取舍过程,我们称之为 trade-off。很多机制通常都是优势和劣势并存的。Redis 使用内存大页就是一个典型的例子。虽然内存大页可以给 Redis 带来内存分配方面的收益,但是,不要忘了,Redis 为了提供数据可靠性保证,需要将数据做持久化保存。这个写入过程由额外的线程执行,所以,此时,Redis 主线程仍然可以接收客户端写请求。客户端的写请求可能会修改正在进行持久化的数据。在这一过程中,Redis 就会采用写时复制机制,也就是说,一旦有数据要被修改,Redis 并不会直接修改内存中的数据,而是将这些数据拷贝一份,然后再进行修改。如果采用了内存大页,那么,即使客户端请求只修改 100B 的数据,Redis 也需要拷贝 2MB 的大页。
相反,如果是常规内存页机制,只用拷贝 4KB。两者相比,你可以看到,当客户端请求修改或新写入数据较多时,内存大页机制将导致大量的拷贝,这就会影响 Redis 正常的访存操作,最终导致性能变慢。