【Redis】主从

106 阅读10分钟

1 读写分离

Redis 提供了主从库模式,以保证数据副本的一致,主从库之间采用的是读写分离的方式。读操作:主库、从库都可以接收;写操作:首先到主库执行,然后,主库将写操作同步给从库。

image.png

2 主从全量同步

2.1 建立主从关系

当我们启动多个 Redis 实例的时候,它们相互之间就可以通过 replicaof(Redis 5.0 之前使用 slaveof)命令形成主库和从库的关系,之后会按照三个阶段完成数据的第一次同步。例如,现在有实例 1(ip:172.16.19.3)和实例 2(ip:172.16.19.5),我们在实例 2 上执行以下这个命令后,实例 2 就变成了实例 1 的从库,并从实例 1 上复制数据:

replicaof  172.16.19.3  6379

2.2 主从同步流程

三阶段完成主从的第一次数据同步,具体的流程图如下:

image.png

一阶段

从库给主库发送 psync 命令,表示要进行数据同步,主库根据这个命令的参数来启动复制。psync 命令包含了主库的 runID 和复制进度 offset 两个参数。runID,是每个 Redis 实例启动时都会自动生成的一个随机 ID,用来唯一标记这个实例。当从库和主库第一次复制时,因为不知道主库的 runID,所以将 runID 设为“?”; offset,此时设为 -1,表示第一次复制。

主库收到 psync 命令后,会用 FULLRESYNC 响应命令带上两个参数:主库 runID 和主库目前的复制进度 offset,返回给从库。从库收到响应后,会记录下这两个参数。(方便后续从库同步主库的数据)

二阶段

主库执行 bgsave 命令,生成 RDB 文件,接着将文件发给从库。从库接收到 RDB 文件后,会先清空当前数据库,然后加载 RDB 文件。

三阶段

在主库将数据同步给从库的过程中,主库不会被阻塞,仍然可以正常接收请求。否则,Redis 的服务就被中断了。但是,这些请求中的写操作并没有记录到刚刚生成的 RDB 文件中。为了保证主从库的数据一致性,主库会在内存中用专门的 replication buffer,记录 RDB 文件生成后收到的所有写操作。当主库完成 RDB 文件发送后,就会把此时 replication buffer 中的修改操作发给从库,从库再重新执行这些操作。这样一来,主从库就实现同步了。

3 增量同步

3.1 环形缓冲区

在 Redis 2.8 之前,如果主从库在命令传播时出现了网络闪断,那么,从库就会和主库重新进行一次全量复制,开销非常大。从 Redis 2.8 开始,网络断了之后,主从库会采用增量复制的方式继续同步。介绍增量复制前,先了解一下环形缓冲区repl_backlog_buffer

image.png

repl_backlog_buffer 是一个环形缓冲区,主库会记录自己写到的位置,从库则会记录自己已经读到的位置。刚开始的时候,主库和从库的写读位置在一起,这算是它们的起始位置。随着主库不断接收新的写操作,它在缓冲区中的写位置会逐步偏离起始位置,对主库来说,对应的偏移量就是master_repl_offset。同样,从库在复制完写操作命令后,它在缓冲区中的读位置也开始逐步偏移刚才的起始位置,此时,从库已复制的偏移量 slave_repl_offset 也在不断增加。正常情况下,这两个偏移量基本相等。

3.2 增量同步流程

image.png

当主从库断连后,主库会把断连期间收到的写操作命令,写入 replication buffer,同时也会把这些操作命令也写入 repl_backlog_buffer 这个缓冲区。主从库的连接恢复之后,从库首先会给主库发送 psync 命令,并把自己当前的 slave_repl_offset 发给主库,主库会判断自己的 master_repl_offsetslave_repl_offset 之间的差距。在网络断连阶段,主库可能会收到新的写操作命令,所以,一般来说,master_repl_offset 会大于 slave_repl_offset。此时,主库只用把 master_repl_offset 和 slave_repl_offset 之间的命令操作同步给从库就行。

注意:因为 repl_backlog_buffer 是一个环形缓冲区,所以在缓冲区写满后,主库会继续写入,此时,就会覆盖掉之前写入的操作。如果从库的读取速度比较慢,就有可能导致从库还未读取的操作被主库新写的操作覆盖了,这会导致主从库间的数据不一致。

4 主从同步“坑”点

4.1 主从数据不一致

4.1.1 为什么出现?

那为啥会出现这个坑呢?

其实这是因为主从库间的命令复制是异步进行的。具体来说,在主从库命令传播阶段,主库收到新的写命令后,会发送给从库。但是,主库并不会等到从库实际执行完命令后,再把结果返回给客户端,而是主库自己在本地执行完命令后,就会向客户端返回结果了。如果从库还没有执行主库同步过来的命令,主从库间的数据就不一致了。

那在什么情况下,从库会滞后执行同步命令呢?

其实,这里主要有两个原因。

  1. 主从库间的网络可能会有传输延迟,所以从库不能及时地收到主库发送的命令,从库上执行同步命令的时间就会被延后。
  2. 即使从库及时收到了主库的命令,但是,也可能会因为正在处理其它复杂度高的命令(例如集合操作命令)而阻塞。此时,从库需要处理完当前的命令,才能执行主库发送的命令操作,这就会造成主从数据不一致。而在主库命令被滞后处理的这段时间内,主库本身可能又执行了新的写操作。这样一来,主从库间的数据不一致程度就会进一步加剧。

4.1.2 如何解决?

  1. 首先,在硬件环境配置方面,我们要尽量保证主从库间的网络连接状况良好。例如,我们要避免把主从库部署在不同的机房,或者是避免把网络通信密集的应用(例如数据分析应用)和 Redis 主从库部署在一起。

  2. 我们还可以开发一个外部程序来监控主从库间的复制进度。因为 Redis 的 INFO replication 命令可以查看主库接收写命令的进度信息(master_repl_offset)和从库复制写命令的进度信息(slave_repl_offset),所以,我们就可以开发一个监控程序,先用 INFO replication 命令查到主、从库的进度,然后,我们用 master_repl_offset 减去 slave_repl_offset,这样就能得到从库和主库间的复制进度差值了。如果某个从库的进度差值大于我们预设的阈值,我们可以让客户端不再和这个从库连接进行数据读取,这样就可以减少读到不一致数据的情况。不过,为了避免出现客户端和所有从库都不能连接的情况,我们需要把复制进度差值的阈值设置得大一些。当然,监控程序可以一直监控着从库的复制进度,当从库的复制进度又赶上主库时,我们就允许客户端再次跟这些从库连接。大致流程图如下:

    image.png

4.2 读取过期数据

Redis 为什么还能在从库中读到过期的数据呢?其实,这是由 Redis 的过期数据删除策略引起的。我来给你具体解释下。Redis 同时使用了两种策略来删除过期的数据,分别是惰性删除策略和定期删除策略

4.2.1 惰性删除

当一个数据的过期时间到了以后,并不会立即删除数据,而是等到再有请求来读写这个数据时,对数据进行检查,如果发现数据已经过期了,再删除这个数据。这个策略的好处是尽量减少删除操作对 CPU 资源的使用,对于用不到的数据,就不再浪费时间进行检查和删除了。但是,这个策略会导致大量已经过期的数据留存在内存中,占用较多的内存资源。

4.2.2 定期删除

Redis 每隔一段时间(默认 100ms),就会随机选出一定数量的数据,检查它们是否过期,并把其中过期的数据删除,这样就可以及时释放一些内存。

4.2.3 Redis版本

首先,虽然定期删除策略可以释放一些内存,但是,Redis 为了避免过多删除操作对性能产生影响,每次随机检查数据的数量并不多。如果过期数据很多,并且一直没有再被访问的话,这些数据就会留存在 Redis 实例中。业务应用之所以会读到过期数据,这些留存数据就是一个重要因素。

其次,惰性删除策略实现后,数据只有被再次访问时,才会被实际删除。如果客户端从主库上读取留存的过期数据,主库会触发删除操作,此时,客户端并不会读到过期数据。但是,从库本身不会执行删除操作,如果客户端在从库中访问留存的过期数据,从库并不会触发数据删除。那么,从库会给客户端返回过期数据吗?

这就和你使用的 Redis 版本有关了。如果你使用的是 Redis 3.2 之前的版本,那么,从库在服务读请求时,并不会判断数据是否过期,而是会返回过期数据。在 3.2 版本后,Redis 做了改进,如果读取的数据已经过期了,从库虽然不会删除,但是会返回空值,这就避免了客户端读到过期数据。所以,在应用主从集群时,尽量使用 Redis 3.2 及以上版本。

4.2.4 过期时间

只要使用了 Redis 3.2 后的版本,就不会读到过期数据了吗?其实还是会的。

image.png

当主从库全量同步时,如果主库接收到了一条 EXPIRE 命令,那么,主库会直接执行这条命令。这条命令会在全量同步完成后,发给从库执行。而从库在执行时,就会在当前时间的基础上加上数据的存活时间,这样一来,从库上数据的过期时间就会比主库上延后了。这么说可能不太好理解,我再给你举个例子。

假设当前时间是 2020 年 10 月 24 日上午 9 点,主从库正在同步,主库收到了一条命令:EXPIRE testkey 60,这就表示,testkey 的过期时间就是 24 日上午 9 点 1 分,主库直接执行了这条命令。但是,主从库全量同步花费了 2 分钟才完成。等从库开始执行这条命令时,时间已经是 9 点 2 分了。而 EXPIRE 命令是把 testkey 的过期时间设置为当前时间的 60s 后,也就是 9 点 3 分。如果客户端在 9 点 2 分 30 秒时在从库上读取 testkey,仍然可以读到 testkey 的值。但是,testkey 实际上已经过期了。

为了避免这种情况,我给你的建议是,在业务应用中使用 EXPIREAT/PEXPIREAT 命令,把数据的过期时间设置为具体的时间点,避免读到过期数据。