数据准备
参考PDF
概述
索引失效案例(脑海生成B+树去理解记忆)
表结构
全值匹配我最爱
最佳左前缀法则
主键插入顺序
可这个数据页已经满了,再插进来咋办呢?我们需要把当前 页面分裂 成两个页面,把本页中的一些记录
移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着: 性能损耗 !所以如果我们想尽量
避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增 ,这样就不会发生这样的性能损耗了。
所以我们建议:让主键具有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是我们手动插入 , 比如: person_info 表:
CREATE TABLE person_info
(
id INT UNSIGNED NOT NULL AUTO_INCREMENT,
name VARCHAR(100) NOT NULL,
birthday DATE NOT NULL,
phone_number CHAR(11) NOT NULL,
country varchar(100) NOT NULL,
PRIMARY KEY (id),
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);
我们自定义的主键列 id 拥有 AUTO_INCREMENT 属性,在插入记录时存储引擎会自动为我们填入自增的
主键值。这样的主键占用空间小,顺序写入,减少页分裂。
计算、函数、类型转换(自动或手动)导致索引失效
name 字段有索引的情况下,第一个走索引,第二个不走。
类型转换导致索引失效
范围条件右边的列索引失效
不等于(!= 或者<>)索引失效
is null可以使用索引,is not null无法使用索引
like以通配符%开头索引失效
OR 前后存在非索引的列,索引失效
数据库和表的字符集统一使用utf8mb4
统一使用utf8mb4( 5.5.3版本以上支持)兼容性更好,统一字符集可以避免由于字符集转换产生的乱码。不
同的 字符集 进行比较前需要进行 转换 会造成索引失效。
练习
小结
关联查询优化
join语句原理
驱动表与被驱动表
join前后并不能决定驱动表或者被驱动表
简单嵌套循环连接(性能最差)
索引嵌套循环连接
块嵌套循环连接(了解)
被驱动表会先加载到内存才能与驱动表进行匹配操作
小结(重点)
子查询优化
MySQL从4.1版本开始支持子查询,使用子查询可以进行SELECT语句的嵌套查询,即一个SELECT查询的结
果作为另一个SELECT语句的条件。 子查询可以一次性完成很多逻辑上需要多个步骤才能完成的SQL操作 。
子查询是 MySQL 的一项重要的功能,可以帮助我们通过一个 SQL 语句实现比较复杂的查询。但是,子
查询的执行效率不高。
原因:
① 执行子查询时,MySQL需要为内层查询语句的查询结果 建立一个临时表 ,然后外层查询语句从临时表
中查询记录。查询完毕后,再 撤销这些临时表 。这样会消耗过多的CPU和IO资源,产生大量的慢查询。
② 子查询的结果集存储的临时表,不论是内存临时表还是磁盘临时表都 不会存在索引 ,所以查询性能会
受到一定的影响。
③ 对于返回结果集比较大的子查询,其对查询性能的影响也就越大。
在MySQL中,可以使用连接( JOIN )查询来替代子查询。 连接查询 不需要建立临时表 ,其 速度比子查询
要快 ,如果查询中使用索引的话,性能就会更好。
排序优化
排序优化
小结
GROUP BY优化
优化分页查询
优化思路一
在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。
EXPLAIN SELECT * FROM student t,(SELECT id FROM student ORDER BY id LIMIT 2000000,10) a
WHERE t.id = a.id;
优化思路二
该方案适用于主键自增的表,可以把Limit 查询转换成某个位置的查询 。
EXPLAIN SELECT * FROM student WHERE id > 2000000 LIMIT 10;
优先考虑覆盖索引(查询的列,全都是二级索引的值,不需要回表)
什么是覆盖索引?
理解方式一:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了满足查询结果的数据就叫做覆盖索引。
理解方式二:非聚簇复合索引的一种形式,它包括在查询里的SELECT、JOIN和WHERE子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。
简单说就是, 索引列+主键 包含 SELECT 到 FROM之间查询的列 。(不需要回表操作)
覆盖索引可以使一些本来不走索引的变成走索引,原因无别,只要是优化器认为成本低的操作就会选择该操作,因为覆盖索引省去了回表操作。】
如下:
学习技术的方法:
任何事物的出现都应该是有利有弊的,学技术时,先看技术的实际应用是怎么样的,先学会应用,然后如果要学得深,就要不断去问为什么,一直往深去看。就像以前SSH、SSM、微服务等等,每出现新事物都是对旧事物的迭代,相应就会有一些好处,但是也会有一些弊端。因为任何东西都应该是有利有弊的。
覆盖索引的利弊
好处:
1. 避免 Innodb 表进行索引的二次查询(回表)
2. 可以把随机IO变成顺序IO加快查询效率 (回表是随机IO的)
弊端:
索引字段的维护 总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这是业务DBA,或者称为业务数据架构师的工作。
如何给字符串添加索引
有一张教师表,表定义如下:
create table teacher
(
ID bigint unsigned primary key,
email varchar(64),
...
) engine = innodb;
要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:
select col1, col2 from teacher where email='xxx';
如果email这个字段上没有索引,那么这个语句就只能做 全表扫描 。
前缀索引
MySQL是支持前缀索引的。默认地,如果你创建索引的语句不指定前缀长度,那么索引就会包含整个字符串。
mysql> alter table teacher add index index1(email);
#或
mysql> alter table teacher add index index2(email(6));
这两种不同的定义在数据结构和存储上有什么区别呢?下图就是这两个索引的示意图。
如果使用的是 index1(即email整个字符串的索引结构),执行顺序是这样的:
-
从index1索引树找到满足索引值是’ zhangssxyz@xxx.com ’的这条记录,取得ID2的值;
-
到主键上查到主键值是ID2的行,判断email的值是正确的,将这行记录加入结果集;
-
取index1索引树上刚刚查到的位置的下一条记录,发现已经不满足email=' zhangssxyz@xxx.com ’的条件了,循环结束。
这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。
如果使用的是 index2(即email(6)索引结构),执行顺序是这样的:
-
从index2索引树找到满足索引值是’zhangs’的记录,找到的第一个是ID1;
-
到主键上查到主键值是ID1的行,判断出email的值不是’ zhangssxyz@xxx.com ’,这行记录丢弃;
-
取index2上刚刚查到的位置的下一条记录,发现仍然是’zhangs’,取出ID2,再到ID索引上取整行然后判断,这次值对了,将这行记录加入结果集;
-
重复上一步,直到在idxe2上取到的值不是’zhangs’时,循环结束。
也就是说使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。 前面已经讲过区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。
前缀索引对覆盖索引的影响
索引下推(面试会考)
Index Condition Pushdown(ICP)是MySQL 5.6中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。ICP可以减少存储引擎访问基表的次数以及MySQL服务器访问存储引擎的次数。
简单来说就是,如果筛选条件是联合索引中有的字段,那么就可以先把需要回表的记录数筛选到最少,然后再进行回表操作,减少需要回表操作的次数就是减少随机IO的次数。
使用前后的成本差别
使用前,存储层多返回了需要被index filter过滤掉的整行记录 。
使用ICP后,直接就去掉了不满足index filter条件的记录,省去了他们回表和传递到server层的成本。
ICP的 加速效果 取决于在存储引擎内通过 ICP筛选 掉的数据的比例。
ICP使用案例
案例1
SELECT *
FROM tuser
WHERE NAME LIKE '张%'
AND age = 10
AND ismale = 1;
可以 show profile 看一下
ICP的使用条件
ICP 的使用条件:
① 只能用于二级索引(secondary index) (本质是减少回表操作,没有回表操作就没有意义了,聚簇索引 和 覆盖索引就没有意义了)
②explain显示的执行计划中type值(join 类型)为 range 、 ref 、 eq_ref 或者 ref_or_null 。
③ 并非全部where条件都可以用ICP筛选,如果where条件的字段不在索引列中,还是要读取整表的记录到server端做where过滤。
④ ICP可以用于MyISAM和InnnoDB存储引擎
⑤ MySQL 5.6版本的不支持分区表的ICP功能,5.7版本的开始支持。
⑥ 当SQL使用覆盖索引时,不支持ICP优化方法。
其它查询优化策略(面试会问)
EXISTS 和 IN 的区分
问题:
不太理解哪种情况下应该使用 EXISTS,哪种情况应该用 IN。选择的标准是看能否使用表的索引吗?
COUNT(*)与COUNT(具体字段)效率
问:在 MySQL 中统计数据表的行数,可以使用三种方式: SELECT COUNT(*) 、 SELECT COUNT(1) 和SELECT COUNT(具体字段) ,使用这三者之间的查询效率是怎样的?
关于SELECT(*)
在表查询中,建议明确字段,不要使用 * 作为查询的字段列表,推荐使用SELECT <字段列表> 查询。原因:
① MySQL 在解析的过程中,会通过 查询数据字典 将"*"按序转换成所有列名,这会大大的耗费资源和时间。
② 无法使用 覆盖索引
LIMIT 1 对优化的影响
针对的是会扫描全表的 SQL 语句,如果你可以确定结果集只有一条,那么加上 LIMIT 1 的时候,当找到一条结果的时候就不会继续扫描了,这样会加快查询速度。
如果数据表已经对字段建立了唯一索引,那么可以通过索引进行查询,不会全表扫描的话,就不需要加上 LIMIT 1 了。
多使用 COMMIT
只要有可能,在程序中尽量多使用 COMMIT,这样程序的性能得到提高,需求也会因为 COMMIT 所释放的资源而减少。
COMMIT 所释放的资源:
- 回滚段上用于恢复数据的信息
- 被程序语句获得的锁
- redo / undo log buffer 中的空间
- 管理上述 3 种资源中的内部花费
淘宝数据库,主键如何设计的?(面试可以问主键怎么设计,谈见解,注重思考)
聊一个实际问题:淘宝的数据库,主键是如何设计的?
某些错的离谱的答案还在网上年复一年的流传着,甚至还成为了所谓的MySQL军规。其中,一个最明显的错误就是关于MySQL的主键设计。
大部分人的回答如此自信:用8字节的 BIGINT 做主键,而不要用INT。 错 !
这样的回答,只站在了数据库这一层,而没有 从业务的角度 思考主键。主键就是一个自增ID吗?站在2022年的新年档口,用自增做主键,架构设计上可能 连及格都拿不到 。
自增ID的问题
自增ID做主键,简单易懂,几乎所有数据库都支持自增类型,只是实现上各自有所不同而已。自增ID除了简单,其他都是缺点,总体来看存在以下几方面的问题:
1. 可靠性不高
存在自增ID回溯的问题,这个问题直到最新版本的MySQL 8.0才修复。
2. 安全性不高
对外暴露的接口可以非常容易猜测对应的信息。比如:/User/1/这样的接口,可以非常容易猜测用户ID的值为多少,总用户数量有多少,也可以非常容易地通过接口进行数据的爬取。
3. 性能差
自增ID的性能较差,需要在数据库服务器端生成。
4. 交互多
业务还需要额外执行一次类似 last_insert_id() 的函数才能知道刚才插入的自增值,这需要多一次的网络交互。在海量并发的系统中,多1条SQL,就多一次性能上的开销。
5. 局部唯一性
最重要的一点,自增ID是局部唯一,只在当前数据库实例中唯一,而不是全局唯一,在任意服务器间都是唯一的。对于目前分布式系统来说,这简直就是噩梦。
淘宝的主键设计
在淘宝的电商业务中,订单服务是一个核心业务。请问, 订单表的主键 淘宝是如何设计的呢?是自增ID吗?
打开淘宝,看一下订单信息:
从上图可以发现,订单号不是自增ID!我们详细看下上述4个订单号:
1550672064762308113
1481195847180308113
1431156171142308113
1431146631521308113
订单号是19位的长度,且订单的最后5位都是一样的,都是08113。且订单号的前面14位部分是单调递增的。
大胆猜测,淘宝的订单ID设计应该是:
订单ID = 时间 + 去重字段 + 用户ID后6位尾号
这样的设计能做到全局唯一,且对分布式系统查询及其友好。
推荐的主键设计
非核心业务 :对应表的主键自增ID,如告警、日志、监控等信息。
核心业务 :主键设计至少应该是全局唯一且是单调递增。全局唯一保证在各系统之间都是唯一的,单调递增是希望插入时不影响数据库性能。
这里推荐最简单的一种主键设计:UUID。
UUID 的特点:
全局唯一,占用36字节,数据无序,插入性能差。
认识UUID:
为什么UUID是全局唯一的?
为什么UUID占用36个字节?
为什么UUID是无序的?
MySQL数据库的UUID组成如下所示:
UUID = 时间+UUID版本(16字节)- 时钟序列(4字节) - MAC地址(12字节)
我们以UUID值e0ea12d4-6473-11eb-943c-00155dbaa39d举例:
为什么UUID是全局唯一的?
在UUID中时间部分占用60位,存储的类似TIMESTAMP的时间戳,但表示的是从1582-10-15 00:00:00.00 到现在的100ns的计数。可以看到UUID存储的时间精度比TIMESTAMPE更高,时间维度发生重复的概率降 低到1/100ns。
时钟序列是为了避免时钟被回拨导致产生时间重复的可能性。 MAC地址用于全局唯一。
为什么UUID占用36个字节?
UUID根据字符串进行存储,设计时还带有无用"-"字符串,因此总共需要36个字节。
为什么UUID是随机无序的呢?
因为UUID的设计中,将时间低位放在最前面,而这部分的数据是一直在变化的,并且是无序。
改造UUID
若将时间高低位互换,则时间就是单调递增的了,也就变得单调递增了。 MySQL 8.0可以更换时间低位和 时间高位的存储方式,这样UUID就是有序的UUID了。
MySQL 8.0还解决了UUID存在的空间占用的问题,除去了UUID字符串中无意义的"-"字符串,并且将字符 串用二进制类型保存,这样存储空间降低为了16字节。
可以通过MySQL8.0提供的uuid_to_bin函数实现上述功能,同样的,MySQL也提供了bin_to_uuid函数进行
转化:
SET @uuid = UUID();
SELECT @uuid,uuid_to_bin(@uuid),uuid_to_bin(@uuid,TRUE);
通过函数uuid_to_bin(@uuid,true)将UUID转化为有序UUID了。全局唯一 + 单调递增,这不就是我们想要的主键!
4 、有序 UUID 性能测试
16字节的有序UUID,相比之前8字节的自增ID,性能和存储空间对比究竟如何呢?
我们来做一个测试,插入1亿条数据,每条数据占用500字节,含有3个二级索引,最终的结果如下所示:
从上图可以看到插入1亿条数据有序UUID是最快的,而且在实际业务使用中有序UUID在 业务端就可以生成 。还可以进一步减少SQL的交互次数。
另外,虽然有序UUID相比自增ID多了8个字节,但实际只增大了3G的存储空间,还可以接受。
如果不是MySQL8.0 肿么办?
手动赋值字段做主键!
比如,设计各个分店的会员表的主键,因为如果每台机器各自产生的数据需要合并,就可能会出现主键重复的问题。
可以在总部 MySQL 数据库中,有一个管理信息表,在这个表中添加一个字段,专门用来记录当前会员编号的最大值。
门店在添加会员的时候,先到总部 MySQL 数据库中获取这个最大值,在这个基础上加 1,然后用这个值作为新会员的“id”,同时,更新总部 MySQL 数据库管理信息表中的当 前会员编号的最大值。
这样一来,各个门店添加会员的时候,都对同一个总部 MySQL 数据库中的数据表字段进行操作,就解决了各门店添加会员时会员编号冲突的问题。