Lab COW
大部分思路在hint和plan。
先添加引用计数
struct {
struct spinlock lock;
struct run *freelist;
//plane3 物理内存也就是KERBASE ~ PHYSTOP 除以4096也就是PGSIZE
uint8 ref_count[(PHYSTOP - KERNBASE) / PGSIZE];
} kmem;
增加1,要添加到声明到defs.h中
/* kernel/kalloc.c */
void increment_refcount(uint64 pa){
acquire(&kmem.lock);
kmem.ref_count[(pa - KERNBASE) / PGSIZE]++;
release(&kmem.lock);
}
减少1,每次取消对某个物理内存页的引用,最终都会调用到kfree(),因此ref_count减少1在kfree()实现。同时,当ref_count减少到0时,即可释放这一物理页。
/* kernel/kalloc.c */
void
freerange(void *pa_start, void *pa_end)
{
char *p;
p = (char*)PGROUNDUP((uint64)pa_start);
for(; p + PGSIZE <= (char*)pa_end; p += PGSIZE){
acquire(&kmem.lock);
//目的是将ref_count设置为1,因为调用kfree会-1,要抵消这个-1
kmem.ref_count[((uint64)p - KERNBASE) / PGSIZE] = 1;
release(&kmem.lock);
kfree(p);
}
}
void
kfree(void *pa)
{
struct run *r;
if(((uint64)pa % PGSIZE) != 0 || (char*)pa < end || (uint64)pa >= PHYSTOP)
panic("kfree");
acquire(&kmem.lock);
if (--kmem.ref_count[((uint64)pa - KERNBASE) / PGSIZE] == 0)
{
release(&kmem.lock);
// Fill with junk to catch dangling refs.
memset(pa, 1, PGSIZE);
r = (struct run *)pa;
acquire(&kmem.lock);
r->next = kmem.freelist;
kmem.freelist = r;
release(&kmem.lock);
}
else
release(&kmem.lock);
}
分配kalloc一次物理页,就将这个物理页ref_count设置为1
/* kernel/kalloc.c */
void *
kalloc(void)
{
struct run *r;
acquire(&kmem.lock);
r = kmem.freelist;
if(r)
{
kmem.ref_count[((uint64)r - KERNBASE) / PGSIZE] = 1;
kmem.freelist = r->next;
}
release(&kmem.lock);
if(r)
memset((char*)r, 5, PGSIZE); // fill with junk
return (void*)r;
}
添加PTE_COW,标识这个PTE是copy on write(写时复制)的物理页
#define PTE_COW (1L << 8) // 1 -> COW page
修改uvmcopy
- 调用
uvmcopy时,如果当前页面可以写,那就将其置为不可写,同时将其标识为cowpage。 - 最终我们不再分配一个新的物理页,而是直接映射到旧的物理页
- 当要写这个不可写但为cowpage的页面时,启动中断page fault ,此时我们才分配新的物理页
int
uvmcopy(pagetable_t old, pagetable_t new, uint64 sz)
{
pte_t *pte;
uint64 pa, i;
uint flags;
for(i = 0; i < sz; i += PGSIZE){
if((pte = walk(old, i, 0)) == 0)
panic("uvmcopy: pte should exist");
if((*pte & PTE_V) == 0)
panic("uvmcopy: page not present");
pa = PTE2PA(*pte);
increment_refcount(PGROUNDDOWN(pa)); //引用计数
if(*pte & PTE_W)
{
*pte &= ~(PTE_W); // 清除PTE_W
*pte |= PTE_COW; //设置PTE_COW
}
flags = PTE_FLAGS(*pte);
if(mappages(new, i, PGSIZE, pa, flags) != 0){
goto err;
}
}
return 0;
err:
uvmunmap(new, 0, i / PGSIZE, 1);
return -1;
}
修改usertrap,r_scause() == 15的是我们要处理的store page fault,stval()的值此时是发生错误的虚拟地址>p->sz说明地址错误了,无法处理
is_cowpage用来判断该页面是不是cowpagecow_page,为这个cowpage分配新的物理页
//trap.c
void
usertrap(void)
{
int which_dev = 0;
if((r_sstatus() & SSTATUS_SPP) != 0)
panic("usertrap: not from user mode");
// send interrupts and exceptions to kerneltrap(),
// since we're now in the kernel.
w_stvec((uint64)kernelvec);
struct proc *p = myproc();
// save user program counter.
p->trapframe->epc = r_sepc();
if(r_scause() == 8){
// system call
if(p->killed)
exit(-1);
// sepc points to the ecall instruction,
// but we want to return to the next instruction.
p->trapframe->epc += 4;
// an interrupt will change sstatus &c registers,
// so don't enable until done with those registers.
intr_on();
syscall();
}
else if(r_scause() == 15){
uint64 fault_va = r_stval();
if (fault_va > p->sz || // panic: init exiting
is_cowpage(p->pagetable, fault_va) < 0 ||
cow_alloc(p->pagetable, PGROUNDDOWN(fault_va)) == 0)
{
p->killed = 1;
}
} else if((which_dev = devintr()) != 0){
// ok
} else {
printf("usertrap(): unexpected scause %p pid=%d\n", r_scause(), p->pid);
printf(" sepc=%p stval=%p\n", r_sepc(), r_stval());
p->killed = 1;
}
if(p->killed)
exit(-1);
// give up the CPU if this is a timer interrupt.
if(which_dev == 2)
yield();
usertrapret();
}
//是cowpage 0, else -1
int is_cowpage(pagetable_t pagetable, uint64 va)
{
pte_t *pte = walk(pagetable, va, 0);
return (*pte & PTE_COW ? 0:-1);
}
//分配物理地址为cow page
//成果返回mem pointer of void*, else 0
void *cow_alloc(pagetable_t pagetable, uint64 va)
{
pte_t *pte = walk(pagetable, va, 0);
uint64 pa = PTE2PA(*pte);
//引用数为1
if(get_refcount(pa) == 1)
{
*pte |= PTE_W; //设置PTE_W
*pte &= ~PTE_COW; //清除PTE_COW
return (void*) pa;
}
//引用数>1
uint flags;
char* new_mem;
*pte |= PTE_W;
flags = PTE_FLAGS(*pte);
//pa = PTE2PA(*pte);
new_mem = kalloc();
// hint5:If a COW page fault occurs and there's no free memory, the process should be killed.
if(new_mem==0) return 0;
memmove(new_mem, (char*)pa, PGSIZE);
*pte &= ~PTE_V; // 防止panic: remap
if (mappages(pagetable, va, PGSIZE, (uint64)new_mem, flags) != 0)
{
*pte |= PTE_V;
kfree(new_mem);
return 0;
}
kfree((char *)PGROUNDDOWN(pa));
return new_mem;
}
要在def.h中声明,以及walk函数