3 提示工程需要迭代

在机器学习开发中,您通常有一个想法,然后实现它。因此,编写代码、获取数据、训练模型,这将给您带来实验结果。然后您可以查看该输出,进行误差分析,找出work或no work的地方,然后甚至可以更改您解决问题的确切想法或方法,再更改您的实现并运行另一个实验等等,不断迭代,以获得有效的机器学习模型。
但是当您编写使用OOM开发应用程序的提示时,该流程可能会非常类似,您有一个想法,想要完成的任务,然后可以尝试编写第一个提示,希望它的表述清晰具体,并且如果合适,可以给系统一些时间进行思考,然后运行它并查看结果。如果第一次效果不好,则迭代的过程中可以找出原因,例如:指示不够清晰或算法没有足够的时间进行思考,从而充实思路、改进提示,如此循环多次,直到开发应用程序所需的提示得以完成。

这是一张关于一把椅子的信息单,其中描述说它是一个美丽的中世纪灵感家庭的一部分,等等。介绍了椅子的制造方式、尺寸、选项、材料等问题。这款椅子来自意大利。假设你想拿这张信息单来帮助营销团队编写一个在线零售网址的描述,像这样……我将它粘贴进来,所以我的提示是:您的任务是基于技术信息单,帮助营销团队为零售网站或产品创建描述,撰写产品描述等。对吧?这是我第一次尝试向大型语言模型解释这个任务。

运行,我们得到了这个结果。它看起来做得很好,写了一个描述,介绍了一个令人惊叹的中世纪灵感办公椅,完美的版本等等,但当我看到这个结果时,我会说,哇,这真的很长。它做得非常好,准确地完成了我所要求的工作,也就是从技术信息单入手撰写产品描述。
3.1 问题1-文本过长
但是当我看到结果时,我会说,这结果太长了。也许我们希望它短一点。那么,我有了一个想法。我写了一条提示,得到了结果。但是我对结果不是很满意,因为它太长了,所以我将澄清我的提示,并说使用最多50个单词来尝试更好地指导所需的长度,并让我们再次运行它。

好的,这看起来是一个非常好的产品简短描述,介绍了一个中世纪灵感的办公椅等等,是一个既时尚又实用的椅子。不错。让我再次检查一下它的长度。所以我将回答分割成单词,然后打印出长度。它是52个单词,其实不错。大型语言模型在遵循非常精确的单词计数方面不是那么出色,但它实际上表现得不错。有时它会打印出60或65个单词的内容,但它是合理的。

但是这些是告诉大型语言模型你想要的输出长度的不同方式。所以这是一种,两种,三种。我数了一下这些句子。看起来我做得相当不错。然后我还看到有人有时会做一些事情,比如说,最多使用280个字符。大型语言模型,由于它们解释文本的方式,使用一种称为分词器的东西。它们倾向于在计算字符数量方面表现一般。但是,看看281个字符。
3.2 问题2-文字关注错误的细节
随着我们继续为网站完善这段文本,我们可能会决定,哇,这个网站并不是直接面向消费者销售,实际上是旨在向家具零售商销售家具,他们更关注椅子的技术细节和椅子的材料。在这种情况下,您可以采取这个提示并说,我想修改这个提示,使其更加精确地描述技术细节。 所以让我继续修改这个提示。我会说,这种描述是为家具零售商而设计的,因此它应该是技术性的,重点是材料、产品和构造。

嗯,让我们运行一下。还不错。它说,铝制底座和气动椅。高质量的材料。所以通过改变提示,您可以使其更加专注于您想要的特定特征。
所以也许我可以进一步改进这个提示。为了让它给我产品ID,我可以在描述的末尾添加这个指令:在技术规格中包括每7个字符一个产品ID。让我们运行一下,看看会发生什么。它说,向您介绍我们的中世纪风格办公椅,外壳颜色,讨论塑料涂层铝制底座,实用,一些选项,讨论两种产品ID。所以这看起来相当不错。

3.3 问题3-描述需要一个规模表
所以,您可能在各种项目中看到的许多成功提示都是通过这样的迭代过程得出的。仅出于好奇,让我给您展示一个更复杂的提示示例,这可能会让您了解 ChatGPT 能做什么。

我只是在这里添加了一些额外的指令。在描述后,包括一个给出产品尺寸的表格,然后将所有内容格式化为 HTML。 那么让我们运行一下。在实践中,您只有在多次迭代后才能最终得到这样的提示。我不认为有人会在第一次尝试处理事实表时就写出这个精确的提示。因此,这实际上会输出一堆 HTML。
让我们显示这个HTML,看看它是否是有效的HTML并查看它是否起作用。我其实不知道它会不会起作用,但是让我们看一下。

哦,很酷。看起来像是渲染的结果。因此,它具有一个非常漂亮的椅子描述,包括构造、材料和产品尺寸。哦,看起来我漏掉了不超过50个单词的使用说明,所以这有点长。因此,我希望您从这个视频中了解到,提示开发是一个迭代的过程。
尝试一些事情,看看它是否符合您的期望,如果还没有达到预期,那么就考虑如何澄清您的指令,或者在某些情况下,考虑为它提供更多的思考空间,使它更接近您想要的结果。我认为成为一个有效的提示工程师并不是非常依赖于知道完美的提示,而是拥有一个良好的流程来开发有效的提示,以适应您的应用程序。 在这个视频中,我仅仅用一个例子来说明如何开发提示。对于更复杂的应用程序,有时您会有多个例子,比如10个、甚至50个或100个信息表格,然后循环开发提示并对大量情况进行评估。
但对于大多数应用程序的早期开发,我看到很多人像我一样只用一个示例进行开发,但是对于更成熟的应用程序,有时评估提示与更多的示例集是有用的,例如在几十个信息表格上测试不同的提示,以查看在多个信息表格上的平均或最差表现。但通常只有当应用程序更加成熟时,您才需要这些指标来推动提示改进的最后几步。因此,请尝试使用Jupyter代码笔记本示例,并尝试不同的变化,看看结果如何。
本章总结
本章介绍了如何使用ChatGPT,一个基于OpenAI的大型语言模型,来构建交互式的应用程序。开发一个好的提示(prompt)需要迭代的过程,即先有一个想法,然后写一个提示,得到一个结果,分析结果的优缺点,再修改提示,直到满意为止。 在示例中,使用ChatGPT根据一张产品说明表,帮助营销团队写一个产品描述。演示了如何调整提示的长度、格式、指令和内容,以得到更好的结果。还提供了一些框架和思路,来帮助开发者解决问题、优化结果和评估性能。