学习Linux 的价值
Linux是现代化应用程序交付的首选平台,无论是部署在裸机、虚拟化还是容器化环境
公司内部服务(TCE、FaaS、SCM)统一使用DebianLinux系统
加深对操作系统概念和实现的理解,夯实基础知识
熟悉Linux基础指令,熟练运维前端常用服务 (Nginx,Node.js)
计算机硬件
计算机五大基本单元
控制器:控制器是计算机的“大脑”,用于控制计算机中的各种操作。它接收指令,解码指令,调度指令,并且通过总线将指令发送到其他单元,以控制它们执行指令
举例:计算机执行一个打印操作时,控制器会通过运算器进行相关运算,然后将需要打印的数据存储到存储器单元中,最后通过输出单元将数据输出到打印机中
运算器
运算器是计算机中的算术和逻辑单元,用于执行各种算术和逻辑运算。它由ALU(算术逻辑单元)和其他寄存器组成
举例:计算机执行加法操作时,将需要计算的两个数存储在寄存器中,运算器会从寄存器中读取这两个数并进行加法运算,将结果存储到另一个寄存器中
存储器单元
存储器单元是计算机中的存储单元,用于存储程序和数据。它分为内存和外存两部分,内存一般指主存储器,外存一般指磁盘等外部存储设备
举例:主存储器中存储着当前正在执行的程序和需要处理的数据,而辅助存储器则用于长期存储数据和程序
输入单元
输入单元是计算机中的输入设备,用于接收外部数据并将其传输到计算机系统中。例如,键盘、鼠标、扫描仪等都是输入单元
举例:键盘就是一种输入单元,可以将输入的字符或指令送到计算机中进行处理
输出单元
输出单元是计算机中的输出设备,用于将计算机系统中的数据传输到外部环境中。例如,显示器、打印机、喇叭等都是输出单元
举例:显示器、打印机等就是一种输出单元,可以将计算机处理后的数据显示出来或者打印出来
计算机操作系统
管理和控制计算机系统中的硬件和软件资源,用于在用户与系统硬件之间传递信息。
承上启下:
承上:在操作系统之上可以运用我们的计算机应用程序
启下:可以直接与硬件做出交互
BIOS与UEFI
BIOS和UEFI都是计算机的固件,也就是硬件上的软件。它们的作用是在计算机启动时初始化硬件,检测设备是否正常,然后启动操作系统。
BIOS(Basic Input/Output System,基本输入输出系统)是一种早期的固件,它在计算机启动时负责执行POST(Power On Self Test,自检程序),检测硬件设备是否正常,然后加载引导程序,启动操作系统。BIOS存储在主板上的闪存芯片中,由于其限制比较多,如容量小、功能简单、启动速度慢等,已逐渐被新一代的UEFI所取代。
UEFI(Unified Extensible Firmware Interface,统一可扩展固件接口)是BIOS的后继者,是一种新型的计算机固件,提供比BIOS更多的功能和扩展性。UEFI支持更大的启动盘和更多的文件系统,也支持更高级的安全和启动选项,同时启动速度更快。UEFI通常存储在主板上的闪存芯片中,并由厂商提供升级固件的方式,使其支持新的硬件和功能。 在操作系统安装时,需要选择与BIOS或UEFI兼容的启动方式。在BIOS时代,常用的启动方式是Legacy BIOS(传统BIOS)启动模式,而在UEFI时代,常用的启动方式是UEFI启动模式。通常情况下,UEFI启动方式更为推荐,因为它提供了更多的功能和扩展性,同时也支持传统BIOS启动方式,以兼容老的硬件设备。
Linux系统结构
Linux四个主要部分
内核
Linux操作系统的核心部分,它管理计算机硬件的资源,包括CPU、内存、磁盘、网络等。它是操作系统与硬件之间的接口,提供了一个操作系统所需的各种基本服务和功能,如进程管理、文件系统、内存管理、网络协议栈等。
shell
Shell是用户与Linux内核之间的接口,是一个命令解释器,提供了一种命令行界面供用户进行交互。在Shell中,用户可以输入命令和参数,执行脚本和程序,管理文件和目录等。
文件系统
文件系统是Linux操作系统中用于管理文件和目录的机制,是用户与操作系统之间进行文件交互的接口。Linux支持多种文件系统,如ext4、NTFS、FAT32等。它们管理着磁盘上的文件和目录,并提供文件读写、权限控制等基本功能 。
应用程序
应用程序是运行在Linux操作系统上的各种软件,如文本编辑器、浏览器、视频播放器、编译器等。Linux操作系统拥有众多的应用程序,涵盖了各种领域,可以满足不同用户的需求
Linux系统结构 --进程管理
在Linux中,进程是指正在执行的程序实例。每个进程都拥有自己独立的虚拟地址空间、寄存器集合和打开文件的描述符等资源。进程是Linux中最为重要的概念之一
进程的特点
进程是正在执行的一个程序或命令
进程是操作系统中正在执行的一个程序或命令的实例。每个进程都有一个唯一的进程标识符(PID)和一组相关的系统资源,例如内存、打开的文件和输入/输出设备
进程有自己的地址空间,占用一定的系统资源
独立性:每个进程都是独立的实体,拥有自己的虚拟地址空间,因此一个进程无法访问另一个进程的内存空间,从而保证了进程的独立性和安全性
一个CPU核同一时间只能运行一个进程
在单核 CPU 上,同时只能运行一个进程。因为 CPU 在同一时间只能执行一条指令,而每个进程都有自己的一组指令需要被执行,因此同一时间只能有一个进程在执行。当有多个进程需要执行时,操作系统会使用时间片轮转算法,轮流为每个进程分配 CPU 时间,以达到看起来多个进程同时运行的效果。但实际上,每个进程都只在短暂的时间内运行了一小段代码。在多核 CPU 上,可以同时运行多个进程,每个进程都可以被分配到一个 CPU 核心上运行。
进程由它的进程ID(PID)和它父进程的进程D(PPID)唯一识别
进程的唯一识别是通过进程ID(PID)来实现的,PID是一个唯一的数字标识符,用于区分正在运行的不同进程。在Linux中,每个进程都有一个唯一的PID,而且PID不会重复,因此可以通过PID来确定进程的身份与进程ID相关的另一个重要的属性是父进程ID(PPID),它是创建该进程的父进程的进程ID。在Linux中,每个进程都是由另一个进程创建的,所以每个进程都有一个PPID。通过PPID,我们可以建立进程之间的父子关系,形成进程树的结构
除了PID和PPID之外,每个进程还有许多其他属性,例如进程的状态、优先级、打开的文件和共享内存等信息。这些属性可以通过/proc文件系统中的相应文件来查看