输出Hello world
package main //包
import "fmt" //输出输入的包
func main() {
//输出
fmt.Println("Hello World!")
}
基础语法
go的大括号左大括号不能单独一行
可以不使用分号分割,默认一行一个语句。如果一行多个语句就需要使用分号分割
注释和java相同
变量名和java相同,只能是数字、字母、下划线,不能以数字开头
字符串连接可以使用加号
输出的时候也可以使用类似于c语言的输出
fmt.Printf("我是%s\n", "hty")
| 格 式 | 描 述 |
|---|---|
| %v | 按值的本来值输出 |
| %+v | 在 %v 基础上,对结构体字段名和值进行展开 |
| %#v | 输出 Go 语言语法格式的值 |
| %T | 输出 Go 语言语法格式的类型和值 |
| %% | 输出 % 本体 |
| %b | 整型以二进制方式显示 |
| %o | 整型以八进制方式显示 |
| %d | 整型以十进制方式显示 |
| %x | 整型以十六进制方式显示 |
| %X | 整型以十六进制、字母大写方式显示 |
| %U | Unicode 字符 |
| %f | 浮点数 |
| %p | 指针,十六进制方式显示 |
实例
package main
import (
"fmt"
"os"
)
type point struct {
x, y int
}
func main() {
p := point{1, 2}
fmt.Printf("%v\n", p)
fmt.Printf("%+v\n", p)
fmt.Printf("%#v\n", p)
fmt.Printf("%T\n", p)
fmt.Printf("%t\n", true)
fmt.Printf("%d\n", 123)
fmt.Printf("%b\n", 14)
fmt.Printf("%c\n", 33)
fmt.Printf("%x\n", 456)
fmt.Printf("%f\n", 78.9)
fmt.Printf("%e\n", 123400000.0)
fmt.Printf("%E\n", 123400000.0)
fmt.Printf("%s\n", ""string"")
fmt.Printf("%q\n", ""string"")
fmt.Printf("%x\n", "hex this")
fmt.Printf("%p\n", &p)
fmt.Printf("|%6d|%6d|\n", 12, 345)
fmt.Printf("|%6.2f|%6.2f|\n", 1.2, 3.45)
fmt.Printf("|%-6.2f|%-6.2f|\n", 1.2, 3.45)
fmt.Printf("|%6s|%6s|\n", "foo", "b")
fmt.Printf("|%-6s|%-6s|\n", "foo", "b")
s := fmt.Sprintf("a %s", "string")
fmt.Println(s)
fmt.Fprintf(os.Stderr, "an %s\n", "error")
}
数据类型
布尔型
bool
数字类型
整型
- uint8 无符号8位整型
- uint16 无符号16位整型
- uint32 无符号32位整型
- uint64 无符号64位整型
- int8 有符号...
- int16
- int32
- int64
浮点型
- float32 32位浮点型
- float64 64位浮点型
- complex64 32位实数和虚数
- complex128 64位实数和虚数
其他类型
- byte 类似于uint8
- rune 类似int32
- uintptr 指针
字符串类型
字符串就是一串固定长度的字符连接起来的字符序列。Go 的字符串是由单个字节连接起来的。Go 语言的字符串的字节使用 UTF-8 编码标识 Unicode 文本。
派生类类型
- 指针类型
- 数组类型
- 结构体类型
- channel类型
- 函数类型
- 切片类型
- 接口类型
- Map类型
变量
声明方式
var 变量名 变量类型
var 变量名1,变量名2 变量类型
package main
import "fmt"
func main() {
var a string = "hello"
fmt.Println(a)
var b, c int = 1, 2
fmt.Println(b, c)
}
如果没有指定默认值就默认为零值
注:go和java一样不能使用一个整型作为if的条件
还有一种声明方式就是不需要写类型
变量名 := 变量值
这种声明必须在局部声明,不能声明全局变量且声明的时候必须赋值
全局变量声明的常用方式
var(
变量名1 变量类型
变量名2 变量类型
)
常量
const 常量名 [类型] = value
const (
常量名1 = value1
常量名2 = value2
常量名3 = value3
)
iota
iota,特殊常量,可以认为是一个可以被编译器修改的常量。
iota 在 const关键字出现时将被重置为 0(const 内部的第一行之前),const 中每新增一行常量声明将使 iota 计数一次(iota 可理解为 const 语句块中的行索引)。
iota 可以被用作枚举值:
const (
a = iota // 0
b = iota // 1
c = iota // 2
)
第一个 iota 等于 0,每当 iota 在新的一行被使用时,它的值都会自动加 1;所以 a=0, b=1, c=2 可以简写为如下形式:
const (
a = iota
b
c
)
案例
package main
import "fmt"
func main() {
const (
a = iota //0
b //1
c //2
d = "ha" //独立值,iota += 1
e //"ha" iota += 1
f = 100 //iota +=1
g //100 iota +=1
h = iota //7,恢复计数
i //8
)
fmt.Println(a,b,c,d,e,f,g,h,i)
}
结果
0 1 2 ha ha 100 100 7 8
案例
package main
import "fmt"
const (
i=1<<iota
j=3<<iota
k
l
)
func main() {
fmt.Println("i=",i)
fmt.Println("j=",j)
fmt.Println("k=",k)
fmt.Println("l=",l)
}
结果
i= 1
j= 6
k= 12
l= 24
分析:
iota 表示从 0 开始自动加 1,所以 i=1<<0, j=3<<1( << 表示左移的意思),即:i=1, j=6,这没问题,关键在 k 和 l,从输出结果看 k=3<<2,l=3<<3。
简单表述:
- i=1:左移 0 位,不变仍为 1。
- j=3:左移 1 位,变为二进制 110,即 6。
- k=3:左移 2 位,变为二进制 1100,即 12。
- l=3:左移 3 位,变为二进制 11000,即 24。
运算符
与java相同
分支
与java相同 不加括号
循环
与java相同 不加括号
使用
for init; condition; post { }
for condition { } // while循环的for写法
for { } // 类似于for (;;)
for 循环的 range 格式可以对 slice、map、数组、字符串等进行迭代循环。格式如下:
for key, value := range oldMap {
newMap[key] = value
}
如果只想读取 key,格式如下:
for key := range oldMap
for key, _ := range oldMap
如果只想读取value
for _,value := range oldMap
案例
import "fmt"
func main() {
sum := 0
//从1到100求和
for i := 1; i <= 100; i++ {
sum += i
}
fmt.Println(sum)
}
函数
声明
func function_name( [parameter list] ) [return_types] {
函数体
}
案例
/* 函数返回两个数的最大值 */
func max(num1, num2 int) int {
/* 声明局部变量 */
var result int
if (num1 > num2) {
result = num1
} else {
result = num2
}
return result
}
返回值可以返回多个
func swap(x, y int) (int, int) {
return y, x
}
//交换的更简洁写法
x,y=y,x
数组
声明
var 数组名 [size] 类型
var 数组名 = [4]int{1,2,3,4}
数组名 := [4]int{1,2,3,4}
数组名 := [...]int{1,2,3,4}//自动推断长度
//多维数组
var variable_name [SIZE1][SIZE2]...[SIZEN] variable_type
append函数可以将一维数组添加到二维数组中
package main
import "fmt"
func main() {
// 创建空的二维数组
animals := [][]string{}
// 创建三一维数组,各数组长度不同
row1 := []string{"fish", "shark", "eel"}
row2 := []string{"bird"}
row3 := []string{"lizard", "salamander"}
// 使用 append() 函数将一维数组添加到二维数组中
animals = append(animals, row1)
animals = append(animals, row2)
animals = append(animals, row3)
// 循环输出
for i := range animals {
fmt.Printf("Row: %v\n", i)
fmt.Println(animals[i])
}
}
给函数传递数组
void myFunction(param [10]int){
}
void myFunction(param []int){
}
指针
与c相同,但是空表示为nil
var ptr [MAX]*int; //指针数组
结构体
type struct_variable_type struct {
member definition
member definition
...
member definition
}
声明变量
variable_name := structure_variable_type {value1, value2...valuen}
variable_name := structure_variable_type { key1: value1, key2: value2..., keyn: valuen}
案例
package main
import "fmt"
type Books struct {
title string
author string
subject string
book_id int
}
func main() {
// 创建一个新的结构体
fmt.Println(Books{"Go 语言", "www.runoob.com", "Go 语言教程", 6495407})
// 也可以使用 key => value 格式
fmt.Println(Books{title: "Go 语言", author: "www.runoob.com", subject: "Go 语言教程", book_id: 6495407})
// 忽略的字段为 0 或 空
fmt.Println(Books{title: "Go 语言", author: "www.runoob.com"})
}
使用.访问结构体
结构体作为函数参数
package main
import "fmt"
type Books struct {
title string
author string
subject string
book_id int
}
func main() {
var Book1 Books /* 声明 Book1 为 Books 类型 */
var Book2 Books /* 声明 Book2 为 Books 类型 */
/* book 1 描述 */
Book1.title = "Go 语言"
Book1.author = "www.runoob.com"
Book1.subject = "Go 语言教程"
Book1.book_id = 6495407
/* book 2 描述 */
Book2.title = "Python 教程"
Book2.author = "www.runoob.com"
Book2.subject = "Python 语言教程"
Book2.book_id = 6495700
/* 打印 Book1 信息 */
printBook(Book1)
/* 打印 Book2 信息 */
printBook(Book2)
}
func printBook( book Books ) {
fmt.Printf( "Book title : %s\n", book.title)
fmt.Printf( "Book author : %s\n", book.author)
fmt.Printf( "Book subject : %s\n", book.subject)
fmt.Printf( "Book book_id : %d\n", book.book_id)
}
结构体指针
var struct_pointer *Books
struct_pointer = &Book1
//使用结构体指针访问结构体成员,使用 "." 操作符:
struct_pointer.title
案例
package main
import "fmt"
type Books struct {
title string
author string
subject string
book_id int
}
func main() {
var Book1 Books /* 声明 Book1 为 Books 类型 */
var Book2 Books /* 声明 Book2 为 Books 类型 */
/* book 1 描述 */
Book1.title = "Go 语言"
Book1.author = "www.runoob.com"
Book1.subject = "Go 语言教程"
Book1.book_id = 6495407
/* book 2 描述 */
Book2.title = "Python 教程"
Book2.author = "www.runoob.com"
Book2.subject = "Python 语言教程"
Book2.book_id = 6495700
/* 打印 Book1 信息 */
printBook(&Book1)
/* 打印 Book2 信息 */
printBook(&Book2)
}
func printBook( book *Books ) {
fmt.Printf( "Book title : %s\n", book.title)
fmt.Printf( "Book author : %s\n", book.author)
fmt.Printf( "Book subject : %s\n", book.subject)
fmt.Printf( "Book book_id : %d\n", book.book_id)
}
切片
定义切片make
主要是方便对数组的操作
有两种方式来定义切片
var identifier []type //不用指定数组长度
var slice1 []type = make([]type, len) // 使用make函数来声明切片
//make函数
make([]T, length, capacity) //len是数组长度,也是初始切片的长度 capacity是容量
切片初始化
s :=[] int {1,2,3 } // len = capacity = 3
s := arr[:] //s是arr的引用
s := arr[startIndex:endIndex] //从[startIndex,endIndex)
s := arr[startIndex:] //从startIndex到结尾
s := arr[:endIndex] //从开头到endIndex
len函数和cap函数
len函数可以获取切片的长度
cap函数可以获取切片的最长度
package main
import "fmt"
func main() {
var numbers = make([]int,3,5)
printSlice(numbers)
}
func printSlice(x []int){
fmt.Printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x)
}
//输出
//len=3 cap=5 slice=[0 0 0]
一个切片在未初始化之前默认为 nil,长度为 0
append和copy函数
如果想增加切片的容量,我们必须创建一个新的更大的切片并把原分片的内容都拷贝过来。
下面的代码描述了从拷贝切片的 copy 方法和向切片追加新元素的 append 方法。
package main
import "fmt"
func main() {
var numbers []int
printSlice(numbers)
/* 允许追加空切片 */
numbers = append(numbers, 0)
printSlice(numbers)
/* 向切片添加一个元素 */
numbers = append(numbers, 1)
printSlice(numbers)
/* 同时添加多个元素 */
numbers = append(numbers, 2,3,4)
printSlice(numbers)
/* 创建切片 numbers1 是之前切片的两倍容量*/
numbers1 := make([]int, len(numbers), (cap(numbers))*2)
/* 拷贝 numbers 的内容到 numbers1 */
copy(numbers1,numbers)
printSlice(numbers1)
}
func printSlice(x []int){
fmt.Printf("len=%d cap=%d slice=%v\n",len(x),cap(x),x)
}
Range范围
Go 语言中 range 关键字用于 for 循环中迭代数组(array)、切片(slice)、通道(channel)或集合(map)的元素。在数组和切片中它返回元素的索引和索引对应的值,在集合中返回 key-value 对。
for 循环的 range 格式可以对 slice、map、数组、字符串等进行迭代循环。格式如下:
for key, value := range oldMap {
newMap[key] = value
}
range遍历数组
遍历数组的时候key是下标,value是数组的值
package main
import "fmt"
var pow = []int{1, 2, 4, 8, 16, 32, 64, 128}
func main() {
for i, v := range pow {
fmt.Printf("2**%d = %d\n", i, v)
}
}
/*
输出
2**0 = 1
2**1 = 2
2**2 = 4
2**3 = 8
2**4 = 16
2**5 = 32
2**6 = 64
2**7 = 128
*/
其他案例
package main
import "fmt"
func main() {
//这是我们使用 range 去求一个 slice 的和。使用数组跟这个很类似
nums := []int{2, 3, 4}
sum := 0
for _, num := range nums {
sum += num
}
fmt.Println("sum:", sum)
//在数组上使用 range 将传入索引和值两个变量。上面那个例子我们不需要使用该元素的序号,所以我们使用空白符"_"省略了。有时侯我们确实需要知道它的索引。
for i, num := range nums {
if num == 3 {
fmt.Println("index:", i)
}
}
//range 也可以用在 map 的键值对上。
kvs := map[string]string{"a": "apple", "b": "banana"}
for k, v := range kvs {
fmt.Printf("%s -> %s\n", k, v)
}
//range也可以用来枚举 Unicode 字符串。第一个参数是字符的索引,第二个是字符(Unicode的值)本身。
for i, c := range "go" {
fmt.Println(i, c)
}
}
Map集合
定义
/* 使用 make 函数 */
map_variable := make(map[KeyType]ValueType, initialCapacity)
其中 KeyType 是键的类型,ValueType 是值的类型,initialCapacity 是可选的参数,用于指定 Map 的初始容量。Map 的容量是指 Map 中可以保存的键值对的数量,当 Map 中的键值对数量达到容量时,Map 会自动扩容。如果不指定 initialCapacity,Go 语言会根据实际情况选择一个合适的值。
// 创建一个空的 Map
m := make(map[string]int)
// 创建一个初始容量为 10 的 Map
m := make(map[string]int, 10)
// 使用字面量创建 Map
m := map[string]int{
"apple": 1,
"banana": 2,
"orange": 3,
}
// 获取键值对
v1 := m["apple"]
v2, ok := m["pear"] // 如果键不存在,ok 的值为 false,v2 的值为该类型的零值
// 获取 Map 的长度
len := len(m)
// 遍历 Map
for k, v := range m {
fmt.Printf("key=%s, value=%d\n", k, v)
}
// 删除键值对
delete(m, "banana")
类型转换
//整型转换为浮点型
var a int = 10
var b float64 = float64(a)
字符串类型转换
var str string = "10"
var num int
num, _ = strconv.Atoi(str)//字符串转为整数
package main
import (
"fmt"
"strconv"
)
func main() {
num := 123
str := strconv.Itoa(num)
fmt.Printf("整数 %d 转换为字符串为:'%s'\n", num, str)
}
package main
import (
"fmt"
"strconv"
)
func main() {
str := "3.14"
num, err := strconv.ParseFloat(str, 64)
if err != nil {
fmt.Println("转换错误:", err)
} else {
fmt.Printf("字符串 '%s' 转为浮点型为:%f\n", str, num)
}
}
package main
import (
"fmt"
"strconv"
)
func main() {
num := 3.14
str := strconv.FormatFloat(num, 'f', 2, 64)
fmt.Printf("浮点数 %f 转为字符串为:'%s'\n", num, str)
}
接口类型转换
接口类型转换有两种情况 :类型断言和类型转换。
类型断言用于将接口类型转换为指定类型,其语法为:
value.(type)
或者
value.(T)
其中 value 是接口类型的变量,type 或 T 是要转换成的类型。
如果类型断言成功,它将返回转换后的值和一个布尔值,表示转换是否成功。
package main
import "fmt"
func main() {
var i interface{} = "Hello, World"
str, ok := i.(string)
if ok {
fmt.Printf("'%s' is a string\n", str)
} else {
fmt.Println("conversion failed")
}
}
以上实例中,我们定义了一个接口类型变量 i,并将它赋值为字符串 "Hello, World"。然后,我们使用类型断言将 i 转换为字符串类型,并将转换后的值赋值给变量 str。最后,我们使用 ok 变量检查类型转换是否成功,如果成功,我们打印转换后的字符串;否则,我们打印转换失败的消息。
类型转换用于将一个接口类型的值转换为另一个接口类型,其语法为:T(value)
T 是目标接口类型,value 是要转换的值。
在类型转换中,我们必须保证要转换的值和目标接口类型之间是兼容的,否则编译器会报错。
package main
import "fmt"
type Writer interface {
Write([]byte) (int, error)
}
type StringWriter struct {
str string
}
func (sw *StringWriter) Write(data []byte) (int, error) {
sw.str += string(data)
return len(data), nil
}
func main() {
var w Writer = &StringWriter{}
sw := w.(*StringWriter)
sw.str = "Hello, World"
fmt.Println(sw.str)
}
以上实例中,我们定义了一个 Writer 接口和一个实现了该接口的结构体 StringWriter。然后,我们将 StringWriter 类型的指针赋值给 Writer 接口类型的变量 w。接着,我们使用类型转换将 w 转换为 StringWriter 类型,并将转换后的值赋值给变量 sw。最后,我们使用 sw 访问 StringWriter 结构体中的字段 str,并打印出它的值。
接口
Go 语言提供了另外一种数据类型即接口,它把所有的具有共性的方法定义在一起,任何其他类型只要实现了这些方法就是实现了这个接口。
接口可以让我们将不同的类型绑定到一组公共的方法上,从而实现多态和灵活的设计。
Go 语言中的接口是隐式实现的,也就是说,如果一个类型实现了一个接口定义的所有方法,那么它就自动地实现了该接口。因此,我们可以通过将接口作为参数来实现对不同类型的调用,从而实现多态。
/* 定义接口 */
type interface_name interface {
method_name1 [return_type]
method_name2 [return_type]
method_name3 [return_type]
...
method_namen [return_type]
}
/* 定义结构体 */
type struct_name struct {
/* variables */
}
/* 实现接口方法 */
func (struct_name_variable struct_name) method_name1() [return_type] {
/* 方法实现 */
}
...
func (struct_name_variable struct_name) method_namen() [return_type] {
/* 方法实现*/
}
演示
package main
import (
"fmt"
)
type Phone interface {
call()
}
type NokiaPhone struct {
}
func (nokiaPhone NokiaPhone) call() {
fmt.Println("I am Nokia, I can call you!")
}
type IPhone struct {
}
func (iPhone IPhone) call() {
fmt.Println("I am iPhone, I can call you!")
}
func main() {
var phone Phone
phone = new(NokiaPhone)
phone.call()
phone = new(IPhone)
phone.call()
}
在上面的例子中,我们定义了一个接口 Phone,接口里面有一个方法 call() 。然后我们在 main 函数里面定义了一个 Phone 类型变量,并分别为之赋值为 NokiaPhone 和 IPhone。然后调用 call() 方法,输出结果如下:
I am Nokia, I can call you!
I am iPhone, I can call you!
演示
package main
import "fmt"
type Shape interface {
area() float64
}
type Rectangle struct {
width float64
height float64
}
func (r Rectangle) area() float64 {
return r.width * r.height
}
type Circle struct {
radius float64
}
func (c Circle) area() float64 {
return 3.14 * c.radius * c.radius
}
func main() {
var s Shape
s = Rectangle{width: 10, height: 5}
fmt.Printf("矩形面积: %f\n", s.area())
s = Circle{radius: 3}
fmt.Printf("圆形面积: %f\n", s.area())
}
以上实例中,我们定义了一个 Shape 接口,它定义了一个方法 area(),该方法返回一个 float64 类型的面积值。然后,我们定义了两个结构体 Rectangle 和 Circle,它们分别实现了 Shape 接口的 area() 方法。在 main() 函数中,我们首先定义了一个 Shape 类型的变量 s,然后分别将 Rectangle 和 Circle 类型的实例赋值给它,并通过 area() 方法计算它们的面积并打印出来,输出结果如下:
矩形面积: 50.000000
圆形面积: 28.260000
需要注意的是,接口类型变量可以存储任何实现了该接口的类型的值。在示例中,我们将 Rectangle 和 Circle 类型的实例都赋值给了 Shape 类型的变量 s,并通过 area() 方法调用它们的面积计算方法。
错误处理
Go 语言通过内置的错误接口提供了非常简单的错误处理机制。
error 类型是一个接口类型,这是它的定义:
type error interface {
Error() string
}
我们可以在编码中通过实现 error 接口类型来生成错误信息。
函数通常在最后的返回值中返回错误信息。使用 errors.New 可返回一个错误信息:
func Sqrt(f float64) (float64, error) {
if f < 0 {
return 0, errors.New("math: square root of negative number")
}
// 实现
}
在下面的例子中,我们在调用 Sqrt 的时候传递的一个负数,然后就得到了 non-nil 的 error 对象,将此对象与 nil 比较,结果为 true,所以 fmt.Println(fmt 包在处理 error 时会调用 Error 方法)被调用,以输出错误,请看下面调用的示例代码:
result, err:= Sqrt(-1)
if err != nil {
fmt.Println(err)
}
演示
package main
import (
"fmt"
)
// 定义一个 DivideError 结构
type DivideError struct {
dividee int
divider int
}
// 实现 `error` 接口
func (de *DivideError) Error() string {
strFormat := `
Cannot proceed, the divider is zero.
dividee: %d
divider: 0
`
return fmt.Sprintf(strFormat, de.dividee)
}
// 定义 `int` 类型除法运算的函数
func Divide(varDividee int, varDivider int) (result int, errorMsg string) {
if varDivider == 0 {
dData := DivideError{
dividee: varDividee,
divider: varDivider,
}
errorMsg = dData.Error()
return
} else {
return varDividee / varDivider, ""
}
}
func main() {
// 正常情况
if result, errorMsg := Divide(100, 10); errorMsg == "" {
fmt.Println("100/10 = ", result)
}
// 当除数为零的时候会返回错误信息
if _, errorMsg := Divide(100, 0); errorMsg != "" {
fmt.Println("errorMsg is: ", errorMsg)
}
}
执行以上程序,输出结果为:
100/10 = 10
errorMsg is:
Cannot proceed, the divider is zero.
dividee: 100
divider: 0
并发
Go 语言支持并发,我们只需要通过 go 关键字来开启 goroutine 即可。
goroutine 是轻量级线程,goroutine 的调度是由 Golang 运行时进行管理的。
goroutine 语法格式:
go 函数名( 参数列表 )
//例如
go f(x, y, z)
Go 允许使用 go 语句开启一个新的运行期线程, 即 goroutine,以一个不同的、新创建的 goroutine 来执行一个函数。 同一个程序中的所有 goroutine 共享同一个地址空间。
package main
import (
"fmt"
"time"
)
func say(s string) {
for i := 0; i < 5; i++ {
time.Sleep(100 * time.Millisecond)
fmt.Println(s)
}
}
func main() {
go say("world")
say("hello")
}
执行以上代码,你会看到输出的 hello 和 world 是没有固定先后顺序。因为它们是两个 goroutine 在执行
通道(channel)
通道(channel)是用来传递数据的一个数据结构。
通道可用于两个 goroutine 之间通过传递一个指定类型的值来同步运行和通讯。操作符 <- 用于指定通道的方向,发送或接收。如果未指定方向,则为双向通道。
ch <- v // 把 v 发送到通道 ch
v := <-ch // 从 ch 接收数据
// 并把值赋给 v
声明管道
ch := make(chan int)
注意:默认情况下,通道是不带缓冲区的。发送端发送数据,同时必须有接收端相应的接收数据。
以下实例通过两个 goroutine 来计算数字之和,在 goroutine 完成计算后,它会计算两个结果的和:
package main
import "fmt"
func sum(s []int, c chan int) {
sum := 0
for _, v := range s {
sum += v
}
c <- sum // 把 sum 发送到通道 c
}
func main() {
s := []int{7, 2, 8, -9, 4, 0}
c := make(chan int)
go sum(s[:len(s)/2], c)
go sum(s[len(s)/2:], c)
x, y := <-c, <-c // 从通道 c 中接收
fmt.Println(x, y, x+y)
}
//输出
//-5 17 12
通道缓冲区
通道可以设置缓冲区,通过 make 的第二个参数指定缓冲区大小:
ch := make(chan int, 100)
带缓冲区的通道允许发送端的数据发送和接收端的数据获取处于异步状态,就是说发送端发送的数据可以放在缓冲区里面,可以等待接收端去获取数据,而不是立刻需要接收端去获取数据。
不过由于缓冲区的大小是有限的,所以还是必须有接收端来接收数据的,否则缓冲区一满,数据发送端就无法再发送数据了。
注意:如果通道不带缓冲,发送方会阻塞直到接收方从通道中接收了值。如果通道带缓冲,发送方则会阻塞直到发送的值被拷贝到缓冲区内;如果缓冲区已满,则意味着需要等待直到某个接收方获取到一个值。接收方在有值可以接收之前会一直阻塞。
package main
import "fmt"
func main() {
// 这里我们定义了一个可以存储整数类型的带缓冲通道
// 缓冲区大小为2
ch := make(chan int, 2)
// 因为 ch 是带缓冲的通道,我们可以同时发送两个数据
// 而不用立刻需要去同步读取数据
ch <- 1
ch <- 2
// 获取这两个数据
fmt.Println(<-ch)
fmt.Println(<-ch)
}
//输出结果
//1
//2
遍历通道与关闭通道
Go 通过 range 关键字来实现遍历读取到的数据,类似于与数组或切片。格式如下:
v, ok := <-ch
如果通道接收不到数据后 ok 就为 false,这时通道就可以使用 close() 函数来关闭。
package main
import (
"fmt"
)
func fibonacci(n int, c chan int) {
x, y := 0, 1
for i := 0; i < n; i++ {
c <- x
x, y = y, x+y
}
close(c)
}
func main() {
c := make(chan int, 10)
go fibonacci(cap(c), c)
// range 函数遍历每个从通道接收到的数据,因为 c 在发送完 10 个
// 数据之后就关闭了通道,所以这里我们 range 函数在接收到 10 个数据
// 之后就结束了。如果上面的 c 通道不关闭,那么 range 函数就不
// 会结束,从而在接收第 11 个数据的时候就阻塞了。
for i := range c {
fmt.Println(i)
}
}
输出结果
0
1
1
2
3
5
8
13
21
34