题目列表
解题过程
1、1143.最长公共子序列
给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 **是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
- 例如,
"ace"是"abcde"的子序列,但"aec"不是"abcde"的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
思路: 这里用动态规划解决。
动态规划五部曲:
- 确定dp数组以及下标的含义
- dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
- 确定递推公式
- 如果text1[i - 1]和text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1
- 如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
- dp数组初始化
- dp[i][0] = 0
- dp[0][j] = 0
- 确定遍历顺序
- 从递推公式,可以看出,有三个方向可以推出dp[i][j]
- 因此,需要根据从前向后,从上到下来遍历矩阵。
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int[][] dp = new int[text1.length() + 1][text2.length() + 1];
for (int i = 1; i <= text1.length(); i++) {
char ch1 = text1.charAt(i - 1);
for (int j = 1; j <= text2.length(); j++) {
char ch2 = text2.charAt(j - 1);
if (ch1 == ch2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[text1.length()][text2.length()];
}
}
一维dp数组
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int n1 = text1.length();
int n2 = text2.length();
// 多从二维dp数组过程分析
// 关键在于 如果记录 dp[i - 1][j - 1]
// 因为 dp[i - 1][j - 1] <!=> dp[j - 1] <=> dp[i][j - 1]
int [] dp = new int[n2 + 1];
for(int i = 1; i <= n1; i++){
// 这里pre相当于 dp[i - 1][j - 1]
int pre = dp[0];
for(int j = 1; j <= n2; j++){
//用于给pre赋值
int cur = dp[j];
if(text1.charAt(i - 1) == text2.charAt(j - 1)){
//这里pre相当于dp[i - 1][j - 1] 千万不能用dp[j - 1] !!
dp[j] = pre + 1;
} else{
// dp[j] 相当于 dp[i - 1][j]
// dp[j - 1] 相当于 dp[i][j - 1]
dp[j] = Math.max(dp[j], dp[j - 1]);
}
//更新dp[i - 1][j - 1], 为下次使用做准备
pre = cur;
}
}
return dp[n2];
}
}
2、1035.不相交的钱
在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。
现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:
nums1[i] == nums2[j]- 且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。
以这种方法绘制线条,并返回可以绘制的最大连线数。
思路: 直线不能相交,这就是说明在字符串A中找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。其实就是求最长公共子序列问题。
class Solution {
public int maxUncrossedLines(int[] nums1, int[] nums2) {
int[][] dp = new int[nums1.length + 1][nums2.length + 1];
for (int i = 1; i <= nums1.length; i++) {
int num1 = nums1[i - 1];
for (int j = 1; j <= nums2.length; j++) {
int num2 = nums2[j - 1];
if (num1 == num2) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[nums1.length][nums2.length];
}
}
3、53.最大子序和
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
思路: 这里用动态规划解决。
动态规划五部曲:
- 确定dp数组以及下标的含义
- dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]
- 确定递推公式:dp[i] = max(dp[i - 1] + nums[i], nums[i])
- dp[i - 1] + nums[i] :nums[i]加入当前连续子序列和
- nums[i]:从头开始计算当前连续子序列和
- dp数组初始化
- dp[0] = nums[0]
- 确定遍历顺序
- dp[i]依赖于dp[i - 1]从前向后遍历
- 举例推导dp数组
public static int maxSubArray(int[] nums) {
if (nums.length == 0) {
return 0;
}
int res = nums[0];
int[] dp = new int[nums.length];
dp[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
res = res > dp[i] ? res : dp[i];
}
return res;
}
空间复杂度更低的解法:
//因为dp[i]的递推公式只与前一个值有关,所以可以用一个变量代替dp数组,空间复杂度为O(1)
class Solution {
public int maxSubArray(int[] nums) {
int res = nums[0];
int pre = nums[0];
for(int i = 1; i < nums.length; i++) {
pre = Math.max(pre + nums[i], nums[i]);
res = Math.max(res, pre);
}
return res;
}
}