04 二叉树的统一迭代法

181 阅读4分钟

04 二叉树的统一迭代法

我们发现迭代法实现的先中后序,其实风格也不是那么统一,除了先序和后序,有关联,中序完全就是另一个风格了,一会用栈遍历,一会又用指针来遍历。

实践过的同学,也会发现使用迭代法实现先中后序遍历,很难写出统一的代码,不像是递归法,实现了其中的一种遍历方式,其他两种只要稍稍改一下节点顺序就可以了。

其实针对三种遍历方式,使用迭代法是可以写出统一风格的代码!

我们以中序遍历为例,之前提到说使用栈的话,无法同时解决访问节点(遍历节点)和处理节点(将元素放进结果集)不一致的情况

那我们就将访问的节点放入栈中,把要处理的节点也放入栈中但是要做标记。

如何标记呢,就是要处理的节点放入栈之后,紧接着放入一个空指针作为标记。  这种方法也可以叫做标记法。

1、迭代法中序遍历

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if (root != NULL) st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                if (node->right) st.push(node->right);  // 添加右节点(空节点不入栈)

                st.push(node);                          // 添加中节点
                st.push(NULL); // 中节点访问过,但是还没有处理,加入空节点做为标记。

                if (node->left) st.push(node->left);    // 添加左节点(空节点不入栈)
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.top();    // 重新取出栈中元素
                st.pop();
                result.push_back(node->val); // 加入到结果集
            }
        }
        return result;
    }
};

可以看出我们将访问的节点直接加入到栈中,但如果是处理的节点则后面放入一个空节点, 这样只有空节点弹出的时候,才将下一个节点放进结果集。

2、迭代法前序遍历

class Solution {
public:
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if (root != NULL) st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop();
                if (node->right) st.push(node->right);  // 右
                if (node->left) st.push(node->left);    // 左
                st.push(node);                          // 中
                st.push(NULL);
            } else {
                st.pop();
                node = st.top();
                st.pop();
                result.push_back(node->val);
            }
        }
        return result;
    }
};

3、迭代法后序遍历

class Solution {
public:
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> result;
        stack<TreeNode*> st;
        if (root != NULL) st.push(root);
        while (!st.empty()) {
            TreeNode* node = st.top();
            if (node != NULL) {
                st.pop();
                st.push(node);                          // 中
                st.push(NULL);

                if (node->right) st.push(node->right);  // 右
                if (node->left) st.push(node->left);    // 左

            } else {
                st.pop();
                node = st.top();
                st.pop();
                result.push_back(node->val);
            }
        }
        return result;
    }
};

4、Java实现以上程序

//迭代法前序遍历
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
                
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
    }
}
//迭代法中序遍历
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
    Stack<TreeNode> st = new Stack<>();
    if (root != null) st.push(root);
    while (!st.empty()) {
        TreeNode node = st.peek();
        if (node != null) {
            st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
            if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
            st.push(node);                          // 添加中节点
            st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。

            if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)
        } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
            st.pop();           // 将空节点弹出
            node = st.peek();    // 重新取出栈中元素
            st.pop();
            result.add(node.val); // 加入到结果集
        }
    }
    return result;
}
}
//迭代法后序遍历
class Solution {
   public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new LinkedList<>();
        Stack<TreeNode> st = new Stack<>();
        if (root != null) st.push(root);
        while (!st.empty()) {
            TreeNode node = st.peek();
            if (node != null) {
                st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
                st.push(node);                          // 添加中节点
                st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
                if (node.right!=null) st.push(node.right);  // 添加右节点(空节点不入栈)
                if (node.left!=null) st.push(node.left);    // 添加左节点(空节点不入栈)         
                               
            } else { // 只有遇到空节点的时候,才将下一个节点放进结果集
                st.pop();           // 将空节点弹出
                node = st.peek();    // 重新取出栈中元素
                st.pop();
                result.add(node.val); // 加入到结果集
            }
        }
        return result;
   }
}