什么是 I/O 多路复用
我们可以使用 fgets 方法等待标准输入,但这样做就没有办法在套接字有数据时读出数据;或者使用 read 方法等待套接字有数据返回,但就没有办法在标准输入有数据的情况下,读入数据并发送给对方。
I/O 多路复用的设计初衷就是解决这样的场景。我们可以把标准输入、套接字等都看做 I/O 的一路,多路复用的意思,就是在任何一路 I/O 有“事件”发生的情况下,通知应用程序去处理相应的 I/O 事件
select 函数就是这样一种常见的 I/O 多路复用技术。使用 select 函数,通知内核挂起进程,当一个或多个 I/O 事件发生后,控制权返还给应用程序,由应用程序进行 I/O 事件的处理。
这些 I/O 事件的类型非常多,比如:
- 标准输入文件描述符准备好可以读。
- 监听套接字准备好,新的连接已经建立成功。
- 已连接套接字准备好可以写。
- 如果一个 I/O 事件等待超过了 10 秒,发生了超时事件。
select 函数的使用方法
我们先看一下它的声明:
int select(int maxfd, fd_set *readset, fd_set *writeset, fd_set *exceptset, const struct timeval *timeout);
返回:若有就绪描述符则为其数目,若超时则为 0,若出错则为 -1
maxfd 表示的是待测试的描述符基数,它的值是待测试的最大描述符加 1。比如现在的 select 待测试的描述符集合是{0,1,4},那么 maxfd 就是 5
紧接着的是三个描述符集合,分别是读描述符集合 readset、写描述符集合 writeset 和异常描述符集合 exceptset,这三个分别通知内核,在哪些描述符上检测数据可以读,可以写和有异常发生。
那么如何设置这些描述符集合呢?以下的宏可以帮助到我们。
void FD_ZERO(fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);
我们可以这样想象,下面一个向量代表了一个描述符集合,其中,这个向量的每个元素都是二机制数中的 0 或者 1。
a[maxfd-1], ..., a[1], a[0]
我们按照这样的思路来理解这些宏:
- FD_ZERO 用来将这个向量的所有元素都设置成 0;
- FD_SET 用来把对应套接字 fd 的元素,a[fd] 设置成 1;
- FD_CLR 用来把对应套接字 fd 的元素,a[fd] 设置成 0;
- FD_ISSET 对这个向量进行检测,判断出对应套接字的元素 a[fd] 是 0 还是 1。
其中 0 代表不需要处理,1 代表需要处理。
很多系统用一个整型数组来表示一个描述字集合的,一个 32 位的整型数可以表示 32 个描述字,例如第一个整型数表示 0-31 描述字,第二个整型数可以表示 32-63 描述字,以此类推。
这个时候再来理解为什么描述字集合{0,1,4},对应的 maxfd 是 5,而不是 4,就比较方便了。
因为这个向量对应的是下面这样的:
a[4],a[3],a[2],a[1],a[0]
待测试的描述符个数显然是 5, 而不是 4。
三个描述符集合中的每一个都可以设置成空,这样就表示不需要内核进行相关的检测。
最后一个参数是 timeval 结构体时间:
struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */
};
这个参数设置成不同的值,会有不同的可能:
- 设置成空 (NULL),表示如果没有 I/O 事件发生,则 select 一直等待下去。
- 设置一个非零的值,表示等待固定的一段时间后从 select 阻塞调用中返回
- 将 tv_sec 和 tv_usec 都设置成 0,表示根本不等待,检测完毕立即返回。这种情况使用得比较少。
程序例子
通过这个例子来理解 select 函数。
#include "common.h"
int main(int argc, char **argv) {
if (argc != 2) {
error(1, 0, "usage: select01 <IPaddress>");
}
int socket_fd = tcp_client(argv[1], SERV_PORT);
char recv_line[MAXLINE], send_line[MAXLINE];
int n;
fd_set readmask;
fd_set allreads;
FD_ZERO(&allreads);//12行
FD_SET(0, &allreads);
FD_SET(socket_fd, &allreads);
for (;;) {
readmask = allreads;//17行
int rc = select(socket_fd + 1, &readmask, NULL, NULL, NULL);
if (rc <= 0) {
error(1, errno, "select failed");
}
if (FD_ISSET(socket_fd, &readmask)) {
n = read(socket_fd, recv_line, MAXLINE);
if (n < 0) {
error(1, errno, "read error");
} else if (n == 0) {
error(1, 0, "server terminated \n");
}
recv_line[n] = 0;
fputs(recv_line, stdout);
fputs("\n", stdout);
}
if (FD_ISSET(STDIN_FILENO, &readmask)) {
if (fgets(send_line, MAXLINE, stdin) != NULL) {
int i = strlen(send_line);
if (send_line[i - 1] == '\n') {
send_line[i - 1] = 0;
}
printf("now sending %s\n", send_line);
ssize_t rt = write(socket_fd, send_line, strlen(send_line));
if (rt < 0) {
error(1, errno, "write failed ");
}
printf("send bytes: %zu \n", rt);
}
}
}
}
程序的 12 行通过 FD_ZERO 初始化了一个描述符集合,这个描述符读集合是空的:
第 13 和 14 行分别使用 FD_SET 将描述符 0,即标准输入,以及连接套接字描述符 3 设置为待检测:
接下来是循环检测,我们没有阻塞在 fgets 或 read 调用,而是通过 select 来检测套接字描述字有数据可读,或者标准输入有数据可读。比如,当用户通过标准输入使得标准输入描述符可读时,返回的 readmask 的值为:
这时 select 调用返回,可以使用 FD_ISSET 来判断哪个描述符准备好可读了。
我们需要注意的是,这个程序的 17-18 行非常重要,初学者很容易在这里掉坑里去。
第 17 行是每次测试完之后,重新设置待测试的描述符集合。你可以看到上面的例子,在 select 测试之前的数据是{0,3},select 测试之后就变成了{0}。
这是因为 select 调用每次完成测试之后,内核都会修改描述符集合,通过修改完的描述符集合来和应用程序交互,应用程序使用 FD_ISSET 来对每个描述符进行判断,从而知道什么样的事件发生。
第 18 行则是使用 socket_fd+1 来表示待测试的描述符基数。切记需要 +1。
套接字描述符就绪条件
当我们说 select 测试返回,某个套接字准备好可读,有哪几种情况可能发生?
- 套接字接收缓冲区有数据可以读,如果我们使用 read 函数去执行读操作,肯定不会被阻塞,而是会直接读到这部分数据。
- 对方发送了 FIN,使用 read 函数执行读操作,不会被阻塞,直接返回 0。
- 有已经完成的连接建立,此时使用 accept 函数去执行不会阻塞,直接返回已经完成的连接。
- 套接字有错误待处理,使用 read 函数去执行读操作,不阻塞,且返回 -1。
总结成一句话就是,内核通知我们套接字有数据可以读了,使用 read 函数不会阻塞。
刚开始理解某个套接字可写时,会有一个错觉,总是从应用程序角度出发去理解,我开始是这样想的,当应用程序完成相应的计算,有数据准备发送给对端了,可以往套接字写,对应的就是套接字可写。
其实这个理解是非常不正确的,select 检测套接字可写,完全是基于套接字本身的特性来说的,具体来说有以下几种情况。
- 套接字发送缓冲区足够大,如果我们使用非阻塞套接字进行 write 操作,将不会被阻塞,直接返回。
- 连接的写半边已经关闭,如果继续进行写操作将会产生 SIGPIPE 信号。
- 套接字上有错误待处理,使用 write 函数去执行读操作,不阻塞,且返回 -1。
总结成一句话就是,内核通知我们套接字可以往里写了,使用 write 函数就不会阻塞。