06 求解难度问题——区间问题

127 阅读12分钟

06 求解难度问题——区间问题

1、跳跃游戏

题目简介:

给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标。

示例:
输入: nums = [2,3,1,1,4]
输出: true
解释: 可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

题解:

刚看到本题一开始可能想:当前位置元素如果是3,我究竟是跳一步呢,还是两步呢,还是三步呢,究竟跳几步才是最优呢?

其实跳几步无所谓,关键在于可跳的覆盖范围!

不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。

这个范围内,别管是怎么跳的,反正一定可以跳过来。

那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点

局部最优推出全局最优,找不出反例,试试贪心!

i每次移动只能在cover的范围内移动,每移动一个元素,cover得到该元素数值(新的覆盖范围)的补充,让i继续移动下去。

而cover每次只取 max(该元素数值补充后的范围, cover本身范围)。

如果cover大于等于了终点下标,直接return true就可以了。

class Solution {
    public boolean canJump(int[] nums) {
        if (nums.length == 1) {
            return true;
        }
        //覆盖范围, 初始覆盖范围应该是0,因为下面的迭代是从下标0开始的
        int coverRange = 0;
        //在覆盖范围内更新最大的覆盖范围
        for (int i = 0; i <= coverRange; i++) {
            coverRange = Math.max(coverRange, i + nums[i]);
            if (coverRange >= nums.length - 1) {
                return true;
            }
        }
        return false;
    }
}

2、跳跃游戏II

题目简介:

给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i] 
  • i + j < n

返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]。

示例:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
     从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

题解:

本题要计算最小步数,那么就要想清楚什么时候步数才一定要加一呢?

贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最小步数。

思路虽然是这样,但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。

所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!

如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。

从图中可以看出来,就是移动下标达到了当前覆盖的最远距离下标时,步数就要加一,来增加覆盖距离。最后的步数就是最少步数。

移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不考虑是不是终点的情况。

想要达到这样的效果,只要让移动下标,最大只能移动到nums.size - 2的地方就可以了。

因为当移动下标指向nums.size - 2时:

  • 如果移动下标等于当前覆盖最大距离下标, 需要再走一步(即ans++),因为最后一步一定是可以到的终点。(题目假设总是可以到达数组的最后一个位置)
  • 如果移动下标不等于当前覆盖最大距离下标,说明当前覆盖最远距离就可以直接达到终点了,不需要再走一步。
class Solution {
    public int jump(int[] nums) {
        int result = 0;
        // 当前覆盖的最远距离下标
        int end = 0;
        // 下一步覆盖的最远距离下标
        int temp = 0;
        for (int i = 0; i <= end && end < nums.length - 1; ++i) {
            temp = Math.max(temp, i + nums[i]);
            // 可达位置的改变次数就是跳跃次数
            if (i == end) {
                end = temp;
                result++;
            }
        }
        return result;
    }
}

3、用最少数量的箭引爆气球

题目简介:

有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points ,其中points[i] = [xstart, xend] 表示水平直径在 xstart 和 xend之间的气球。你不知道气球的确切 y 坐标。

一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足  xstart ≤ x ≤ xend,则该气球会被 引爆 。可以射出的弓箭的数量 没有限制 。 弓箭一旦被射出之后,可以无限地前进。

给你一个数组 points ,返回引爆所有气球所必须射出的 最小 弓箭数

示例:
输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2
解释:气球可以用2支箭来爆破:
-x = 6处射出箭,击破气球[2,8][1,6]-x = 11处发射箭,击破气球[10,16][7,12]。

输入: points = [[1,2],[3,4],[5,6],[7,8]]
输出: 4
解释: 每个气球需要射出一支箭,总共需要4支箭。

题解:

如何使用最少的弓箭呢?

直觉上来看,貌似只射重叠最多的气球,用的弓箭一定最少,那么有没有当前重叠了三个气球,我射两个,留下一个和后面的一起射这样弓箭用的更少的情况呢?

尝试一下举反例,发现没有这种情况。

那么就试一试贪心吧!局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。

算法确定下来了,那么如何模拟气球射爆的过程呢?是在数组中移除元素还是做标记呢?

如果真实的模拟射气球的过程,应该射一个,气球数组就remove一个元素,这样最直观,毕竟气球被射了。

但仔细思考一下就发现:如果把气球排序之后,从前到后遍历气球,被射过的气球仅仅跳过就行了,没有必要让气球数组remove气球,只要记录一下箭的数量就可以了。

为了让气球尽可能的重叠,需要对数组进行排序

那么按照气球起始位置排序,还是按照气球终止位置排序呢?

其实都可以!只不过对应的遍历顺序不同,我就按照气球的起始位置排序了。

既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。

从前向后遍历遇到重叠的气球了怎么办?

如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭

以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例

可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。

class Solution {
    public int findMinArrowShots(int[][] points) {
        // 根据气球直径的开始坐标从小到大排序
        // 使用Integer内置比较方法,不会溢出
        Arrays.sort(points, (a, b) -> Integer.compare(a[0], b[0]));

        int count = 1;  // points 不为空至少需要一支箭
        for (int i = 1; i < points.length; i++) {
            if (points[i][0] > points[i - 1][1]) {  // 气球i和气球i-1不挨着,注意这里不是>=
                count++; // 需要一支箭
            } else {  // 气球i和气球i-1挨着
                points[i][1] = Math.min(points[i][1], points[i - 1][1]); // 更新重叠气球最小右边界
            }
        }
        return count;
    }
}

4、无重叠区间

题目简介:

给定一个区间的集合 intervals ,其中 intervals[i] = [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠 。

示例:
输入: intervals = [[1,2],[2,3],[3,4],[1,3]]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。

输入: intervals = [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。

题解:

相信很多同学看到这道题目都冥冥之中感觉要排序,但是究竟是按照右边界排序,还是按照左边界排序呢?

其实都可以。主要就是为了让区间尽可能的重叠。

我来按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了

此时问题就是要求非交叉区间的最大个数。

区间,1,2,3,4,5,6都按照右边界排好序。

当确定区间 1 和 区间2 重叠后,如何确定是否与 区间3 也重贴呢?

就是取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。

接下来就是找大于区间1结束位置的区间,是从区间4开始。那有同学问了为什么不从区间5开始?别忘了已经是按照右边界排序的了

区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。

总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。

class Solution {
    public int eraseOverlapIntervals(int[][] intervals) {
        Arrays.sort(intervals, (a,b)-> {
            return Integer.compare(a[0],b[0]);
        });
        int count = 1;
        for(int i = 1;i < intervals.length;i++){
            if(intervals[i][0] < intervals[i-1][1]){
                intervals[i][1] = Math.min(intervals[i - 1][1], intervals[i][1]);
                continue;
            }else{
                count++;
            }    
        }
        return intervals.length - count;
    }
}

5、划分字母区间

题目简介:

给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。

注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。

返回一个表示每个字符串片段的长度的列表。

示例:
输入:s = "ababcbacadefegdehijhklij"
输出:[9,7,8]
解释:
划分结果为 "ababcbaca""defegde""hijhklij" 。
每个字母最多出现在一个片段中。
像 "ababcbacadefegde", "hijhklij" 这样的划分是错误的,因为划分的片段数较少。 

题解:

题目要求同一字母最多出现在一个片段中,那么如何把同一个字母的都圈在同一个区间里呢?

如果没有接触过这种题目的话,还挺有难度的。

在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。

可以分为如下两步:

  • 统计每一个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点
class Solution {
    public List<Integer> partitionLabels(String S) {
        List<Integer> list = new LinkedList<>();
        int[] edge = new int[26];
        char[] chars = S.toCharArray();
        for (int i = 0; i < chars.length; i++) {
            edge[chars[i] - 'a'] = i;
        }
        int idx = 0;
        int last = -1;
        for (int i = 0; i < chars.length; i++) {
            idx = Math.max(idx,edge[chars[i] - 'a']);
            if (i == idx) {
                list.add(i - last);
                last = i;
            }
        }
        return list;
    }
}

6、合并区间

题目简介:

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。

示例:
输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3][2,6] 重叠, 将它们合并为 [1,6].

题解:

这几道题都是判断区间重叠,区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。

所以一样的套路,先排序,让所有的相邻区间尽可能的重叠在一起,按左边界,或者右边界排序都可以,处理逻辑稍有不同。

按照左边界从小到大排序之后,如果 intervals[i][0] <= intervals[i - 1][1] 即intervals[i]的左边界 <= intervals[i - 1]的右边界,则一定有重叠。(本题相邻区间也算重贴,所以是<=)

知道如何判断重复之后,剩下的就是合并了,如何去模拟合并区间呢?

其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。

class Solution {
    public int[][] merge(int[][] intervals) {
        LinkedList<int[]> res = new LinkedList<>();
        Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0]));
        res.add(intervals[0]);
        for (int i = 1; i < intervals.length; i++) {
            if (intervals[i][0] <= res.getLast()[1]) {
                int start = res.getLast()[0];
                int end = Math.max(intervals[i][1], res.getLast()[1]);
                res.removeLast();
                res.add(new int[]{start, end});
            }
            else {
                res.add(intervals[i]);
            }         
        }
        return res.toArray(new int[res.size()][]);
    }
}