算法——二分搜索树

186 阅读1分钟

本身是二叉树,每个节点大于其左子树的所有结点的值,小于其右子树的所有结点的值。子树也是一棵二分搜索树。树中的元素具有可比性,不包括重复元素。 中序自带排序。

代码

public class BinarySearchTree<E extends Comparable<E>> implements Iterable<E>{
    //二分搜索树结点的定义
    private class Node{
        public E e;
        public Node left,right;
        public Node(E e){
            this.e=e;
            left=null;
            right=null;
        }
    }
    private Node root;//根结点的指针
    private int size;//结点的个数
    //创建一棵空的二分搜索树
    public BinarySearchTree(){
        root = null;
        size=0;
    }
    //获取二分搜索树的元素个数
    public int size(){
        return size;
    }
    //判断二分搜索树是否为空
    public boolean isEmpty(){
        return size==0 && root==null;
    }
    //向二分搜索树中添加一个元素e
    public void add (E e){
        root=add(root,e);
    }
    //向以node为根的二分搜索树中添加元素e。并返回新节点插入之后的二分搜索树的根
    private void add(Node node,E e){
       if(node==null){
           size++;
           return new Node(e);
       } 
       if(e.compareTo(node.e)<0){
           node.left=add(node.left,e);
       }else if(e.compareTo(node.e)>0){
           node.right=add(node.right,e);
       }
       return node;
    }
    //判断二分搜索树中是否包含元素e
    public boolean contains(E e){
        return contains(root,e);
    }
    //以node为根节点的树中,判断e是否存在
    private boolean contains(Node node,E e){
        if(node==null){
            return false;
        }
        if(e.compareTo(node.e)==0){
            return ture;
        }
        if(e.compareTo(node.e)<0){
           return contains(node.left,e);
       }else{
           return contains(node.right,e);
       }
    }
    //前序遍历
    public void preOrder(){
        preOrder(root);
    }
    //前序遍历的递归实现
    private void preOrder(Node node){
        if(node==null){
            return;
        }
        System.out.println(node.e);
        preOrder(node.left);
        preOrder(node.right);
    }
    
    //前序遍历的非递归实现
    public void preOrderNR(){
        LinkedList<Node> stack = new LinkedList<>();
        stack.push(root);
        while(!static.isEmpty()){
            Node cur= stack.pop();
            System.out.println(cur.e);
            if(cur.right!=null){
                stack.push(cur.right);
            }
             if(cur.left!=null){
                stack.push(cur.left);
            }
        }
    }
    
    //中序遍历
    public void inOrder(){
        inOrder(root);
    }
    //中序遍历的递归实现
    private void inOrder(Node node){
        if(node==null){
            return;
        }
        inOrder(node.left);
        System.out.println(node.e);
        inOrder(node.right);
    }
    
    //中序遍历的非递归实现
    public void inOrderNR(){
        LinkedList<Node> stack = new LinkedList<>();
        Node p =root;
        while(p!=null){
           stack.push(p);
           p=p.left;
        }
        while(!static.isEmpty()){
             Node cur= stack.pop();
            System.out.println(cur.e);
            if(cur.right!=null){
                p=cur.right;
                while(p!=null){
                    stack.push(p);
                    p=p.left;
                }
            }
        }
    }
    
    //后序遍历
    public void postOrder(){
        postOrder(root);
    }
    //后序遍历的递归实现
    private void postOrder(Node node){
        if(node==null){
            return;
        }
        postOrder(node.left);
        postOrder(node.right);
        System.out.println(node.e);
    }
    //层序遍历
    public void levelOrder(){
        LinkedList<Node> queue = new LinkedList<>();
        queue.offer(root);
        while(!queue.isEmpty()){
            Node cur=queue.poll();
            System.out.println(cur.e);
            if(cur.left != null){
                queue.offer(cur.left);
            }
            if(cur.right!=null){
                queue.offer(cur.right);
            }
        }
    }
    
    //返回二分搜索树中的最小值
    public E minnum(){//迭代
        if(isEmpty()){
            throw new IllegalArgumentException("BST IS EMPTY");
        }
        Node p = root;
        while(p.left!=null){
            p=p.left;
        }
        return p.e;
    } 
     public E minnum(){//递归
        if(isEmpty()){
            throw new IllegalArgumentException("BST IS EMPTY");
        }
       return minnum(root).e;//返回的是结点
    } 
    private Node minnum(Node node){//返回以Node为根结点的二分搜索树中最小值的结点
        if(node.left==null){
            return node;
        }
        return minnum(node.left);
    }
    
    public E maxnum(){//迭代
        if(isEmpty()){
            throw new IllegalArgumentException("BST IS EMPTY");
        }
        return maxnum(root).e;
    } 
     private Node minnum(Node node){
          if(node.right==null){
            return node;
        }
        return maxnum(node.right);
     }
    
    //删除最小值
    public E removeMin(){
        E ret = minnum();
        root = removeMin(root);
        return ret;
    }
    private Node removeMin(Node node){//删除最小值并返回新树的根
        if(node.left==null){
            Node rightNode=node.right;
            node.right=null;
            size--;
            return rightNode;
        }
        node.left=removeMin(node.left);
        return node;
    }
    
     //删除最大值
    public E removeMax(){
        E ret = maxnnum();
        root = removeMax(root);
        return ret;
    }
    private Node removeMax(Node node){//删除最大值并返回新树的根
        if(node.right==null){
            Node leftNode=node.left;
            node.left=null;
            size--;
            return leftNode;
        }
        node.right=removeMax(node.right);
        return node;
    }
    
    //删除二分搜索树中任意元素e
    public void remove(E e){//递归
        root=remove(root,e);
    }
    private Node remove(Node node,E e){//删除e的结点并返回新树的根
        if(node ==null){
            return null;
        }
        if(e.compareTo(node.e)<0){
            node.left=remove(node.left,e);
            return node;
        }else if(e.compareTo(node.e)<0){
            node.right=remove(node.right,e);
            return node;
        }else{
            //如果左子树为空
            if(node.left==null){
                Node rightNode=node.right;
                node.right=null;
                size--;
                return rightNode;
            }
            //如果右子树为空
            if(node.right==null){
                Node leftNode=node.left;
                node.left=null;
                size--;
                return leftNode; 
            }
             //如果右,左子树都不为空
             Node successor = minnum(node.right);
             successor.right=removeMin(node.right);
             successor.left=node.left;
             node.left=node.right=null;
             return successor;
        }
    }
    
    //删除方法2
     @Override 
    public String toString(){
        if(isEmpty()){
            return "[]";
        }
        StringBuilder sb = new StringBuilder();
        //中序
        inOrderByString(root,sb);
        return sb.toString();
    }
    private void inOrderByString(Node node,StringBuilder sb){
        if(node==null){
            return;
        }
        inOrderByString(node.left,sb);
        sb.append(node.e+" ");
        inOrderByString(node.right,sb);
    }
    
    @Override 
    public Iterator<E> iterator(){
        return null;
    }
    
    private class BSTInterator implements  Iterator<E>{
        
        
        @Override 
        public boolean hasNext(){
            return false;
        }
        @Override 
        public E next(){
            return null;
        }
    }
}

 
    


//测试
import BinarySearch;
public class TestBST{
    public static void main(String[] args){
        BinarySearchTree<Integer> tree=new BinarySearchTree<>();
        tree.add(4);
        tree.add(3);
        tree.add(5);
        tree.add(2);
        tree.add(6);
        tree.add(1);
        System.out.println(tree.contains(6));
        System.out.println(tree.contains(8));
        tree.preOrder();
        tree.inOrder();
        tree.preOrderNR();
        tree.inOrderNR();
        tree.levelOrder();
         System.out.println("min"+tree.minnum());
         System.out.println(tree.removeMin());
         System.out.println("min"+tree.minnum());
         System.out.println(tree.removeMax());
         tree.inOrderNR();
         remove(3);
    }
}