直流调速系统的主要优点在于调速范围广、静差率小、稳定性好以及具有良好的动态性能。在相当长时期内,高性能的调速系统几乎都是直流调速系统。尽管如此,直流调速系统却解决不了直流电动机本身的换向和在恶劣环境下的不适应问题,同时制造大容量、高转速及高电压直流电动机也十分困难,这就限制了直流拖动系统的进一步发展。
交流电动机自1985年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域。20世纪70年代后,国际上解决了交流电动机调速方案中的关键问题,使得交流调速系统得到了迅速的发展,现在交流调速系统已逐步取代大部分直流调速系统。目前,交流调速已具备了宽调速范围、高稳态精度、快动态响应、高工作效率以及可以四象限运行等优异特性,其稳、动态特性均可以与直流调速系统相媲美。
与直流调速系统相比,交流调速系统具有以下特点:
(1) 容量大;
(2) 转速高且耐高压;
(3) 交流电动机的体积、重量、价格比同等容量的直流电动机小,且结构简单、经济可靠、惯性小;
(4) 交流电动机环境使用性强,坚固耐用,可以在十分恶劣的环境下使用;
(5) 高性能、高精度的新型交流拖动系统已达同直流拖动系统一样的性能指标;
(6) 交流调速系统能显著的节能;
从各方面看,交流调速系统最终将取代直流调速系统。
主电路主要由三相对称交流电压源、晶闸管、晶闸管三相交流调压器、交流异步电动机、电机信号分配器等部分组成。
下面分别讨论三相交流电源、三相交流调压器、同步脉冲触发器、交流异步电动机、电机测试信号分配器的建模和参数设置问题[16]。
晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管元件采用“相位控制”方式,利用电网自然换流。图3.4中所示为晶闸管三相交流调压器的仿真模型。
当建模和参数设置完成后,即可开始进行仿真。
在MATLAB的模型窗口打开“Simulink”菜单,点击“Start”命令后,系统开始进行仿真,仿真结束后可输出仿真结果。然后根据输出结果,观察系统是否稳定,如果不稳定,则 继续修改系统中的积分参数、比例参数等参数,直到系统稳定为止。
系统有两种输出方式:“示波器”以及“out1”输出模块。本文采用示波器观察输出结果。运行结束后,只要在系统的模型图上双击“示波器”图标即可。通过“示波器”模块观察仿真输出,则要对“示波器的“Limit data points to last”的值要设的大一点,否则”Figure”数尺的图形会不完整。一般情况下设置“Limit data points to last”为500000,本文也是如此。
示波器数尺结果如下:图3.17显示为交流调压调速系统的转速曲线,图3.18为交流调压调速系统电子转矩输出,图3.19为交流调压调速电路三相定子电流输出。
交流调压调速系统具有线路简单,价格便宜,使用维修方便等优点,所以在实际的工程中得到广泛的应用。 详细研究了三相交流调压电路,并通过MATLAB的SIMULINK 电力系统工具箱分别对其主电路和控制电路进行了建模和参数设置,最终建立了异步电动机调压调速系统仿真模型,根据输出的仿真结果,简单分析了该系统的转速输出、电磁转矩输出以及三相定子电流输出,验证了交流调压电路的工作原理以及系统模型的正确性,为交流调速系统今后的发展及应用奠定了良好的理论基础。
在系统中,由于非线性环节线性化处理、近似处理、调节器的饱和非线性等因素导致了工程设计与性能要求有差别,从而仿真出的波形不是很理想,抗扰性能不够强等等缺点。所以在系统的仿真过程中必须经过大量的调试和参数的修改,才能得出超调量小、抗干扰性能较好调压调速系统。
造成系统的工程设计方法与仿真实验之间有差距的原因总结如下:
(1)工程设计方法在设计过程中做了很多近似的处理,而这些简化处理要在一定的条件下才成立。
(2)仿真实验在建模过程中忽略了非线性因素和次要因素。
(3)用MATLAB/SIMULINK软件是控制系统功能的完善,实现系统控制容易,构造模型简单的强大的动态仿真工具。该方法经济又方便,能大大缩短科研开发的速度,提高开发效率,同时可以尝试不同的控制方式,进行优化设计。