添加商户缓存
缓存更新策略
业务场景:
- 低一致性需求:使用内存淘汰机制。例如店铺类型的查询缓存
- 高一致性需求:主动更新,并以超时剔除作为兜底方案。例如店铺详情查询的缓存
主动更新策略(三种方案)
第一种(线程安全问题)
先删除缓存,再操作数据库 -> 可能导致数据不一致(异常情况/穿插)
先操作数据库,再删除缓存 -> 缓存失效了 -> 导致数据不一致 -> 发生可能性较低(需要满足好几个条件)
缓存更新策略的最佳实践方案:
- 低一致性需求:使用Redis自带的内存淘汰机制
- 高一致性需求:主动更新,并以超时剔除作为兜底方案
- 读操作
- 缓存命中直接返回
- 缓存未命中则查询数据库,并写入缓存,设定超时时间
- 写操作
- 先写数据库,再删除缓存
- 要确保数据库与缓存操作的原子性
- 读操作
实现商铺缓存与数据库的双写一致
给查询商铺的缓存添加超时剔除和主动更新的策略 -> 修改ShopController中的业务逻辑,满足下面的需求:
- 根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间
- 根据id修改店铺时,先修改数据库,再删除缓存
缓存穿透
缓存穿透 是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。
缓存穿透的解决方案有哪些?
- 缓存null值
- 布隆过滤
- 增强id的复杂度,避免被猜测id规律
- 做好数据的基础格式校验
- 加强用户权限校验
缓存雪崩
缓存雪崩 是指同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。
解决方案:
- 给不同的Key的TTL添加随机值
- 利用Redis集群提高服务的可用性
- 给缓存业务添加降级限流策略
- 给业务添加多级缓存
缓存击穿
缓存击穿问题也叫热点key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。
常见的解决两种解决方案:
- 互斥锁
- 逻辑过期
比较:
基于互斥锁防护解决缓存击穿问题
需求:修改根据id查询商铺的业务,基于互斥锁方式来解决缓存击穿问题。
基于逻辑过期方式解决缓存击穿问题
需求:修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题。
缓存工具封装
基于StringRedisTemplate封装一个缓存工具类,满足下列需求:
- 方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
- 方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓存击穿问题
- 方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
- 方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题