函数的独占时间
有一个 单线程 CPU 正在运行一个含有 n 道函数的程序。每道函数都有一个位于 0 和 n-1 之间的唯一标识符。
函数调用 存储在一个 调用栈 上 :当一个函数调用开始时,它的标识符将会推入栈中。而当一个函数调用结束时,它的标识符将会从栈中弹出。标识符位于栈顶的函数是 当前正在执行的函数 。每当一个函数开始或者结束时,将会记录一条日志,包括函数标识符、是开始还是结束、以及相应的时间戳。
给你一个由日志组成的列表 logs ,其中 logs[i] 表示第 i 条日志消息,该消息是一个按 "{function_id}:{"start" | "end"}:{timestamp}" 进行格式化的字符串。例如,"0:start:3" 意味着标识符为 0 的函数调用在时间戳 3 的 起始开始执行 ;而 "1:end:2" 意味着标识符为 1 的函数调用在时间戳 2 的 末尾结束执行。注意,函数可以 调用多次,可能存在递归调用 。
函数的 独占时间 定义是在这个函数在程序所有函数调用中执行时间的总和,调用其他函数花费的时间不算该函数的独占时间。例如,如果一个函数被调用两次,一次调用执行 2 单位时间,另一次调用执行 1 单位时间,那么该函数的 独占时间 为 2 + 1 = 3 。
以数组形式返回每个函数的 独占时间 ,其中第 i 个下标对应的值表示标识符 i 的函数的独占时间。
示例 1:
输入: n = 2, logs = ["0:start:0","1:start:2","1:end:5","0:end:6"]
输出: [3,4]
解释:
函数 0 在时间戳 0 的起始开始执行,执行 2 个单位时间,于时间戳 1 的末尾结束执行。
函数 1 在时间戳 2 的起始开始执行,执行 4 个单位时间,于时间戳 5 的末尾结束执行。
函数 0 在时间戳 6 的开始恢复执行,执行 1 个单位时间。
所以函数 0 总共执行 2 + 1 = 3 个单位时间,函数 1 总共执行 4 个单位时间。
示例 2:
输入: n = 1, logs = ["0:start:0","0:start:2","0:end:5","0:start:6","0:end:6","0:end:7"]
输出: [8]
解释:
函数 0 在时间戳 0 的起始开始执行,执行 2 个单位时间,并递归调用它自身。
函数 0(递归调用)在时间戳 2 的起始开始执行,执行 4 个单位时间。
函数 0(初始调用)恢复执行,并立刻再次调用它自身。
函数 0(第二次递归调用)在时间戳 6 的起始开始执行,执行 1 个单位时间。
函数 0(初始调用)在时间戳 7 的起始恢复执行,执行 1 个单位时间。
所以函数 0 总共执行 2 + 4 + 1 + 1 = 8 个单位时间。
提示:
1 <= n <= 1001 <= logs.length <= 5000 <= function_id < n0 <= timestamp <= 109- 两个开始事件不会在同一时间戳发生
- 两个结束事件不会在同一时间戳发生
- 每道函数都有一个对应
"start"日志的"end"日志
思路分析
问题的关键在于: 在遇到start的时候,如果栈不空,则表面栈中还有任务在执行,需要计算栈顶函数到start的执行时间; 遇到end的时候,一定是栈顶正在运行的函数遇到了end,所以可以直接计算时间即可。栈中存放的是索引,表示任务执行的顺序,同时维护一个last变量-表示上一次开始的时间戳。
算法代码
public int[] exclusiveTime(int n, List < String > logs) {
int[] ans = new int[n];
Stack < Integer > stack = new Stack < > ();
int last = -1;
for (String log: logs) {
String[] split = log.split(":");
int id = Integer.parseInt(split[0]), time = Integer.parseInt(split[2]);
if (split[1].equals("start")) {
if (!stack.isEmpty()) {
ans[stack.peek()] += time - last;
}
stack.add(id);
last = time;
} else {
stack.pop();
ans[id] += time - last + 1;
last = time + 1;
}
}
return ans;
}
结果详情
算法复杂度
- 空间复杂度:
- 时间复杂度:
在掘金(JUEJIN)一起进步,一起成长!