题目:有效的数独
请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
- 数字
1-9在每一行只能出现一次。 - 数字
1-9在每一列只能出现一次。 - 数字
1-9在每一个以粗实线分隔的3x3宫内只能出现一次。(请参考示例图)
注意:
- 一个有效的数独(部分已被填充)不一定是可解的。
- 只需要根据以上规则,验证已经填入的数字是否有效即可。
- 空白格用
'.'表示。
示例 1:
输入: board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出: true
示例 2:
输入: board =
[["8","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出: false
解释: 除了第一行的第一个数字从 5 改为 8 以外,空格内其他数字均与 示例1 相同。 但由于位于左上角的 3x3 宫内有两个 8 存在, 因此这个数独是无效的。
提示:
board.length == 9board[i].length == 9board[i][j]是一位数字(1-9)或者'.'
解题思路
数组三条规则 1、同一行无重复 2、同一列无重复 3、同一个矩阵无重复 1、2由hl数组界定 3由jz数组界定
如何判断是否在同一个子矩阵中呢? 找规律发现若i1/3 == i2/3 j1/3 == j2/3,就说明在同一个子矩阵中。 因此构建的是[3][3]的数组来区别子矩阵。 当然因为i/3 和 j/3 都在[0,2]之内,因此可以用一个函数 area = i/3*3+j/3来界定,area属于[0,9) 该方法完结!
代码实现
public boolean isValidSudoku(char[][] board) {
boolean[][][] hl = new boolean[2][9][9];
//第一个0代表行 1代表列 第二个9是9行/9列 第三个9代表9个数字
boolean[][][] jz = new boolean[3][3][9]; //i j代表第i行第j列个3x3矩阵
for (int i = 0; i < 2; i++)
for (int j = 0; j < 9; j++)
for (int k = 0; k < 9; k++)
hl[i][j][k] = false;
int numberTemp = 2;
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
if (board[i][j] == '.')
continue;
numberTemp = (board[i][j] - '0') - 1; //numberTemp 0~8 对应1~9
//System.out.println(i+" "+j+" "+numberTemp);
if (hl[0][i][numberTemp] == true || hl[1][j][numberTemp] == true) {
//System.out.println(i+"!!! "+j+" "+numberTemp);
return false;
} else {
hl[0][i][numberTemp] = true;
hl[1][j][numberTemp] = true;
} //处理行列
int hTemp = i / 3;
int lTemp = j / 3;
if (jz[hTemp][lTemp][numberTemp] == true) {
return false;
} else {
jz[hTemp][lTemp][numberTemp] = true;
}
}
}
return true;
}
运行结果
复杂度分析
- 空间复杂度:O(n)
- 时间复杂度:O(n^2)
在掘金(JUEJIN) 一起分享知识, Keep Learning!