ArrayList源码分析(最新)

71 阅读4分钟

ArrayList简介

ArrayList 的底层是数组队列,相当于动态数组。与 Java 中的数组相比,它的容量能动态增长。在添加大量元素前,应用程序可以使用ensureCapacity操作来增加 ArrayList 实例的容量。这可以减少递增式再分配的数量。

ArrayList继承于 AbstractList ,实现了 ListRandomAccessCloneablejava.io.Serializable 这些接口。

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
  • RandomAccess 是一个标志接口,表明实现这个接口的 List 集合是支持快速随机访问的。在 ArrayList 中,我们即可以通过元素的序号快速获取元素对象,这就是快速随机访问。

  • ArrayList 实现了 Cloneable 接口 ,即覆盖了函数clone(),能被克隆。

  • ArrayList 实现了 java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。

ArrayList和Vector的区别?

  • ArrayListList 的主要实现类,底层使用 Object[ ]存储,适用于频繁的查找工作,线程不安全 ;

  • VectorList 的古老实现类,底层使用 Object[ ]存储,线程安全的。

ArrayList与LinkedList区别?

  • 是否保证线程安全: ArrayListLinkedList 都是不同步的,也就是不保证线程安全;

  • 底层数据结构: Arraylist 底层使用的是 Object 数组LinkedList 底层使用的是 双向链表 数据结构(JDK1.6 之前为循环链表,JDK1.7 取消了循环。注意双向链表和双向循环链表的区别,下面有介绍到!)

  • 插入和删除是否受元素位置的影响:ArrayList 采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。 比如:执行add(E e)方法的时候, ArrayList 会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是 O(1)。但是如果要在指定位置 i 插入和删除元素的话(add(int index, E element))时间复杂度就为 O(n-i)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前移一位的操作。 ② LinkedList 采用链表存储,所以对于add(E e)方法的插入,删除元素时间复杂度不受元素位置的影响,近似 O(1),如果是要在指定位置i插入和删除元素的话((add(int index, E element)) 时间复杂度近似为o(n))因为需要先移动到指定位置再插入。

  • 是否支持快速随机访问: LinkedList 不支持高效的随机元素访问,而 ArrayList 支持。快速随机访问就是通过元素的序号快速获取元素对象(对应于get(int index)方法)。

  • 内存空间占用: ArrayList 的空 间浪费主要体现在在 list 列表的结尾会预留一定的容量空间,而 LinkedList 的空间花费则体现在它的每一个元素都需要消耗比 ArrayList 更多的空间(因为要存放直接后继和直接前驱以及数据)。

image.png

ArrayList核心源码解读

ArrayList扩容机制分析

先从ArrayList的构造函数说起

(JDK8) ArrayList有三种方式来初始化,构造方法源码如下:

public ArrayList(int initialCapacity) {
    if (initialCapacity > 0) {
        this.elementData = new Object[initialCapacity];
    } else if (initialCapacity == 0) {
        this.elementData = EMPTY_ELEMENTDATA;
    } else {
        throw new IllegalArgumentException("Illegal Capacity: "+
                                           initialCapacity);
    }
}
public ArrayList() {
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
public ArrayList(Collection<? extends E> c) {
    Object[] a = c.toArray();
    if ((size = a.length) != 0) {
        if (c.getClass() == ArrayList.class) {
            elementData = a;
        } else {
            elementData = Arrays.copyOf(a, size, Object[].class);
        }
    } else {
        // replace with empty array.
        elementData = EMPTY_ELEMENTDATA;
    }
}

细心的同学一定会发现 :以无参数构造方法创建 ArrayList 时,实际上初始化赋值的是一个空数组。当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为 10。 下面在我们分析 ArrayList 扩容时会讲到这一点内容!

一步一步分析ArrayList扩容机制

这里以无参构造函数创建的 ArrayList 为例分析

public ArrayList() {
    // elementData: The array buffer into which the elements of the ArrayList are stored.
    // DEFAULTCAPACITY_EMPTY_ELEMENTDATA: private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}

先来看add方法

public boolean add(E e) {
    // The number of times this list has been structurally modified. 
    modCount++; 
    
    // elementData: The array buffer into which the elements of the ArrayList are stored.
    // size: The size of the ArrayList (the number of elements it contains).
    add(e, elementData, size); 
    
    return true;
}
private void add(E e, Object[] elementData, int s) {
    if (s == elementData.length)
        elementData = grow();
    elementData[s] = e;
    size = s + 1;
}
private Object[] grow() {
    return grow(size + 1);
}
private Object[] grow(int minCapacity) {
    int oldCapacity = elementData.length;
    if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        // 无参构造函数创建的ArrayList的第二、三...次扩容走这里
        int newCapacity = ArraysSupport.newLength(oldCapacity,
                minCapacity - oldCapacity, /* minimum growth */
                oldCapacity >> 1           /* preferred growth */);
        return elementData = Arrays.copyOf(elementData, newCapacity);
    } else {
        // 无参构造函数创建的 ArrayList 的第一次扩容就是走这里
        // DEFAULT_CAPACITY: private static final int DEFAULT_CAPACITY = 10
        return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)];  
    }
}
// Calculates a new array length given an array's current length, a preferred growth value, and a minimum growth value. 
public static int newLength(int oldLength, int minGrowth, int prefGrowth) {
    // assert oldLength >= 0
    // assert minGrowth > 0

    int newLength = Math.max(minGrowth, prefGrowth) + oldLength;
    // MAX_ARRAY_LENGTH: public static final int MAX_ARRAY_LENGTH = Integer.MAX_VALUE - 8 = 2147483639;
    if (newLength - MAX_ARRAY_LENGTH <= 0) {
        return newLength;
    }
    return hugeLength(oldLength, minGrowth);
}
private static int hugeLength(int oldLength, int minGrowth) {
    int minLength = oldLength + minGrowth;
    if (minLength < 0) { // overflow
        throw new OutOfMemoryError("Required array length too large");
    }
    if (minLength <= MAX_ARRAY_LENGTH) {
        return MAX_ARRAY_LENGTH;
    }
    return Integer.MAX_VALUE;
}
public static <T> T[] copyOf(T[] original, int newLength) {
    return (T[]) copyOf(original, newLength, original.getClass());
}
@IntrinsicCandidate
public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
    @SuppressWarnings("unchecked")
    T[] copy = ((Object)newType == (Object)Object[].class)
        ? (T[]) new Object[newLength]
        : (T[]) Array.newInstance(newType.getComponentType(), newLength);
    System.arraycopy(original, 0, copy, 0,
                     Math.min(original.length, newLength));
    return copy;
}
// length – the number of array elements to be copied.
@IntrinsicCandidate
public static native void arraycopy(Object src,  int  srcPos,
                                    Object dest, int destPos,
                                    int length);