程序设计天梯赛——L2-041 插松枝
L2-041 插松枝
人造松枝加工场的工人需要将各种尺寸的塑料松针插到松枝干上,做成大大小小的松枝。他们的工作流程(并不)是这样的:
- 每人手边有一只小盒子,初始状态为空。
- 每人面前有用不完的松枝干和一个推送器,每次推送一片随机型号的松针片。
- 工人首先捡起一根空的松枝干,从小盒子里摸出最上面的一片松针 —— 如果小盒子是空的,就从推送器上取一片松针。将这片松针插到枝干的最下面。
- 工人在插后面的松针时,需要保证,每一步插到一根非空松枝干上的松针片,不能比前一步插上的松针片大。如果小盒子中最上面的松针满足要求,就取之插好;否则去推送器上取一片。如果推送器上拿到的仍然不满足要求,就把拿到的这片堆放到小盒子里,继续去推送器上取下一片。注意这里假设小盒子里的松针片是按放入的顺序堆叠起来的,工人每次只能取出最上面(即最后放入)的一片。
- 当下列三种情况之一发生时,工人会结束手里的松枝制作,开始做下一个:
(1)小盒子已经满了,但推送器上取到的松针仍然不满足要求。此时将手中的松枝放到成品篮里,推送器上取到的松针压回推送器,开始下一根松枝的制作。
(2)小盒子中最上面的松针不满足要求,但推送器上已经没有松针了。此时将手中的松枝放到成品篮里,开始下一根松枝的制作。
(3)手中的松枝干上已经插满了松针,将之放到成品篮里,开始下一根松枝的制作。
现在给定推送器上顺序传过来的 N 片松针的大小,以及小盒子和松枝的容量,请你编写程序自动列出每根成品松枝的信息。
输入格式:
输入在第一行中给出 3 个正整数:N(≤103),为推送器上松针片的数量;M(≤20)为小盒子能存放的松针片的最大数量;K(≤5)为一根松枝干上能插的松针片的最大数量。
随后一行给出 N 个不超过 100 的正整数,为推送器上顺序推出的松针片的大小。
输出格式:
每支松枝成品的信息占一行,顺序给出自底向上每片松针的大小。数字间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
8 3 4
20 25 15 18 20 18 8 5
输出样例:
20 15
20 18 18 8
25 5
问题解析
平平无奇的模拟题,很多人说难,我觉着主要是因为题面太绕了。
可以看出,用队列来模拟传送带,用栈来模拟盒子。
AC代码
#include<iostream>
using namespace std;
#include<vector>
#include<algorithm>
#include<math.h>
#include<set>
#include <random>
#include<numeric>
#include<string>
#include<string.h>
#include<iterator>
#include<fstream>
#include<map>
#include<unordered_map>
#include<stack>
#include<list>
#include<queue>
#include<iomanip>
#include<bitset>
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
#define endl '\n'
#define int ll
#define PI acos(-1)
#define INF 0x3f3f3f3f
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PII;
const int N = 2e3 + 50, MOD = 998244353;
int a[N], box[N], f[N];
void solve()
{
int n, m, k;
cin >> n >> m >> k;
for (int i = 1; i <= n; i++)cin >> a[i];
f[0] = 1e9;
int l = 1, r = 0, idx = 1;
while (l <= n || r > 0)
{
//制作
bool st = false;
while (idx <= k)
{
bool flag = false;
if (r > 0 && f[idx - 1] >= box[r])
{
f[idx] = box[r];
flag = true;
idx++;
r--;
}
else
{
while (l <= n)
{
if (f[idx - 1] >= a[l])
{
f[idx++] = a[l++];
flag = true;
break;
}
else if (r < m)
{
box[++r] = a[l];
l++;
}
else break;
}
}
if (!flag)
{
break;
}
}
if (!st)
{
for (int i = 1; i < idx; i++)
{
cout << f[i];
if (i != idx - 1)
cout << " ";
}
cout << endl;
idx = 1;
}
}
}
signed main()
{
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int t = 1;
//cin >> t;
while (t--)
{
solve();
}
return 0;
}