1: Introduction to Big DataBig
先来个定义: data is the term for a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications.
The challenges include search,capture, curation, storage,, sharing, transfer, analysis, and visualization.
大数据指的是大量复杂的数据集,以至于很难使用现有的数据库管理工具或传统的数据处理应用程序进行处理。挑战包括捕获、管理、存储、搜索、共享、传输、分析和可视化。**
2: Data Heterogeneity 数据的异质性
OLTP: Online Transaction Processing (DBMSs) OLAP: Online Analytical Processing (Data Warehousing) RTAP: Real-Time Analytics Processing (Big Data Architecture & technology)**
3: Big Data in Industry 工业大数据
大数据在各个行业的应用和作用!!
1:Big Data in Industry
大数据在几乎每个行业都有应用——零售、医疗保健、金融服务、政府。
Big data has applications in just about every industry – retail, healthcare, financial services, government.
2:Manufacturing
Analysing big data use cases in the manufacturing industry
1:can reduce processing flaws,
2:improve production quality,
3:increase efficiency,
4:and save time and money.
可以减少加工缺陷,提高生产质量,提高效率,节省时间和金钱。
Benefits
1:
Improving Manufacturing Processes改进制造工艺
2:
Better Quality Assurance更佳品质保证
3:Custom Product Design定制产品设计
4.
Managing Supply Chain Risk供应链风险管理
3:Digital Marketing 数字化营销
The research also reports that the top uses for Big Data in digital marketing include:
- 29% To better understand customer insights更好地理解客户的见解
- 18% To improve the supply chain改善供应链,
- 16% To power campaigns and promotions推动活动和促销
大数据在数字营销中的主要用途包括:
29%用于更好地了解客户见解,18%用于改善供应链,16%用于推动活动和促销
4:Computer Fraud and Big Data 计算机欺诈和大数据
Computer fraud, closely linked to internet fraud, is defined as
the use of a computer or computer system to help execute a scheme or illegal activity and the targeting of a computer with the intent to alter, damage, or disable it.
计算机欺诈与互联网欺诈密切相关,其定义为使用计算机或计算机系统来帮助执行计划或非法活动,并以计算机为目标,意图更改、损坏或使其瘫痪。
Computer fraud breaks down roughly into three categories:Theft of informationTheft of or denial of serviceHacking into or damaging a computer’s hardware system
计算机欺诈大致分为三类:信息盗窃盗窃或拒绝服务入侵或破坏计算机硬件系统**
5:Big Data and Algorithmic Trading大数据和算法交易
Financial services, in particular,
have widely adopted big data analytics
to inform better investment decisions with consistent returns.
In conjunction with big data, algorithmic trading uses vast historical data with complex mathematical models to maximize portfolio returns.
However, along with its apparent benefits, significant challenges remain in regards to big data’s ability to capture the mounting volume of data.
特别是金融服务,已经广泛采用大数据分析,为更好的投资决策提供持续的回报。
与大数据相结合,算法交易使用大量历史数据和复杂的数学模型来实现投资组合收益最大化。但在捕捉日益增长的数据量方面仍然存在重大挑战。**
6:Big Data in Health Industry
Big Data in healthcare is being used to predict epidemics, cure disease, improve quality of life and avoid preventable deaths.
医疗保健领域的大数据正被用于
- 预测流行病、
- 治疗疾病、
- 提高生活质量和避免可预防的死亡。**