题目名称:用队列实现栈
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。
实现 MyStack 类:
void push(int x)将元素 x 压入栈顶。int pop()移除并返回栈顶元素。int top()返回栈顶元素。boolean empty()如果栈是空的,返回true;否则,返回false。
示例:
输入:
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 2, 2, false]
解释:
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // 返回 2
myStack.pop(); // 返回 2
myStack.empty(); // 返回 False
提示:
1 <= x <= 9- 最多调用
100次push、pop、top和empty - 每次调用
pop和top都保证栈不为空
思路分析
因为队列是先进的先出,但是栈是后进的先出。因此必须让进队列的元素,排到队首,这样问题就解决了。解决的方法是创建辅助队列,进来的元素先存到辅助队列中,然后将主队列的元素加到辅助元素队列后面,最后再将两个队列交换。
先进先出 的数据结构,要达到后进先出的效果 通过在新添加元素的过程中,将之前加入的元素重新入列 即可做到,后进先出
所以利用两个队列实现栈。每次栈push一个元素的时候,先把元素装进queue2,再把queue1中的每个元素弹出并放入queue2中,最后交换queue1和queue2。ps:每一次栈push都要执行上诉操作。
假设queue1有n个元素,那么每次push,都需要把queue1中的每个元素弹出,再将每个元素放入queue2,所以一共执行2n次操作,同时还有一个新元素加入,所以每次push需要执行2n+1次操作
Code实现
Queue < Integer > queue1;
Queue < Integer > queue2;
public MyStack() {
queue1 = new LinkedList < > ();
queue2 = new LinkedList < > ();
}
public void push(int x) {
queue2.offer(x);
while (!queue1.isEmpty()) {
queue2.offer(queue1.poll());
}
Queue < Integer > temp = new LinkedList < > ();
temp = queue2;
queue2 = queue1;
queue1 = temp;
}
public int pop() {
return queue1.poll();
}
public int top() {
return queue1.peek();
}
public boolean empty() {
return queue1.isEmpty();
}
结果
算法复杂度分析
- 时间复杂度:
- 空间复杂度: