【代码随想录|刷题记录Day31】455.分发饼干、376.摆动序列、53.最大子序和

29 阅读2分钟

题目列表

  455.分发饼干

  376.摆动序列

  53.最大子序和

贪心理论基础

什么是贪心

贪心的本质是选择每一阶段的局部最优,从而达到全局最优。

贪心一般解题步骤

  • 将问题分解为若干个子问题
  • 找出合适的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

解题过程

1、455.分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

思路: 大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。(小饼干先喂给小胃口也可以)

优先考虑饼干,小饼干先喂饱小胃口

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int start = 0;
        int count = 0;
        for (int i = 0; i < s.length && start < g.length; i++) {
            if (s[i] >= g[start]) {
                start++;
                count++;
            }
        }
        return count;
    }
}

优先考虑胃口,先喂饱大胃口

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);
        Arrays.sort(s);
        int start = s.length - 1;
        int count = 0;
        for (int i = g.length - 1; i >= 0 && start >= 0; i--) {
            if (g[i] <= s[start]) {
                start--;
                count++;
            }
        }
        return count;
    }
}

2、376.摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。 第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

思路: 只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)。 这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点。

局部最优: 删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。

整体最优: 整个序列有最多的局部峰值,从而达到最长摆动序列。

需要考虑三种情况:

  • 上下坡中有平坡
  • 数组首尾两端
  • 单调坡中有平坡

贪心法

class Solution {
    public int wiggleMaxLength(int[] nums) {
        if (nums.length <= 1) {
            return nums.length;
        }
        // 当前差值
        int curDiff = 0;
        // 上一个差值
        int preDiff = 0;
        int count = 1;
        for (int i = 1; i < nums.length; i++) {
            // 当前差值
            curDiff = nums[i] - nums[i - 1];
            if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
                count++;
                preDiff = curDiff;
            }
        }
        return count;
    }
}

动态规划

// DP
class Solution {
    public int wiggleMaxLength(int[] nums) {
        // 0 i 作为波峰的最大长度
        // 1 i 作为波谷的最大长度
        int dp[][] = new int[nums.length][2];

        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < nums.length; i++){
            //i 自己可以成为波峰或者波谷
            dp[i][0] = dp[i][1] = 1;

            for (int j = 0; j < i; j++){
                if (nums[j] > nums[i]){
                    // i 是波谷
                    dp[i][1] = Math.max(dp[i][1], dp[j][0] + 1);
                }
                if (nums[j] < nums[i]){
                    // i 是波峰
                    dp[i][0] = Math.max(dp[i][0], dp[j][1] + 1);
                }
            }
        }

        return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);
    }
}

3、53.最大子序和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

思路: 和为负数时重置最大子序起始位置。

贪心法

class Solution {
    public int maxSubArray(int[] nums) {
        if (nums.length == 1) {
            return nums[0];
        }
        int sum = Integer.MIN_VALUE;
        int count = 0;
        for (int i = 0; i < nums.length; i++) {
            count += nums[i];
            sum = Math.max(sum, count);
            // 重置
            if (count <= 0) {
                count = 0;
            }
        }
        return sum;
    }
}

动态规划

class Solution {
    public int maxSubArray(int[] nums) {
        if (nums.length == 1) {
            return nums[0];
        }
        int sum = Integer.MIN_VALUE;
        int[] dp = new int[nums.length];
        dp[0] = nums[0];
        sum = nums[0];
        for (int i = 1; i < nums.length; i++) {
            dp[i] = Math.max(nums[i], dp[i - 1] + nums[i]);
            sum = Math.max(sum, dp[i]);
        }
        return sum;
    }
}

总结

贪心法虽然没什么规律,但是还是蛮好懂的。