最长公共子序列(二)

411 阅读4分钟

描述

给定两个字符串str1和str2,输出两个字符串的最长公共子序列。如果最长公共子序列为空,则返回"-1"。目前给出的数据,仅仅会存在一个最长的公共子序列

数据范围:0≤∣str1∣,∣str2∣≤20000≤∣str1∣,∣str2∣≤2000

要求:空间复杂度 O(n2)O(n2) ,时间复杂度 O(n2)O(n2)

示例1

输入:

"1A2C3D4B56","B1D23A456A"

返回值:

"123456"

示例2

输入:

"abc","def"

返回值:

"-1"

示例3

输入:

"abc","abc"

返回值:

"abc"

示例4

输入:

"ab",""

返回值:

"-1"

知识点:动态规划

动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果

思路:

题目要求获取最长公共子序列,我们肯定要先知道最长到底是多长,因此肯定要先求最长公共子序列的长度,然后根据这个长度获取这个子序列。(注意:子序列不是子串,子串要求所有字符必须连续,子序列不要求连续,只要求相对位置不变)

具体做法:

  • step 1:优先检查特殊情况。
  • step 2:获取最长公共子序列的长度可以使用动态规划,我们以dp[i][j]dp[i][j]dp[i][j]表示在s1中以iii结尾,s2中以jjj结尾的字符串的最长公共子序列长度。
  • step 3:遍历两个字符串的所有位置,开始状态转移:若是iii位与jjj位的字符相等,则该问题可以变成1+dp[i−1][j−1]1+dp[i-1][j-1]1+dp[i−1][j−1],即到此处为止最长公共子序列长度由前面的结果加1。
  • step 4:若是不相等,说明到此处为止的子串,最后一位不可能同时属于最长公共子序列,毕竟它们都不相同,因此我们考虑换成两个子问题,dp[i][j−1]dp[i][j-1]dp[i][j−1]或者dp[i−1][j]dp[i-1][j]dp[i−1][j],我们取较大的一个就可以了,由此感觉可以用递归解决。
  • step 5:但是递归的复杂度过高,重复计算了很多低层次的部分,因此可以用动态规划,从前往后加,由此形成一个表,表从位置1开始往后相加,正好符合动态规划的转移特征。
  • step 6:因为最后要返回该序列,而不是长度,所以在构造表的同时要以另一个二维矩阵记录上面状态转移时选择的方向,我们用1表示来自左上方,2表示来自左边,3表示来自上边。
  • step 7:获取这个序列的时候,根据从最后一位开始,根据记录的方向,不断递归往前组装字符,只有来自左上的时候才添加本级字符,因为这种情况是动态规划中两个字符相等的情况,字符相等才可用。


public class Solution {
    /**
     * longest common subsequence
     * @param s1 string字符串 the string
     * @param s2 string字符串 the string
     * @return string字符串
     */
    public String LCS (String s1, String s2) {
        // write code here
       int str1Len = s1.length();
        int str2Len = s2.length();
        int[][] cLenNUm = new int[s1.length() + 1][s2.length() + 1];//默认赋值,[0][?],[?][0]默认两侧皆0,类似公式中0的场景
        //构造一个LCS长度数组
        for (int i = 1; i <= str1Len; i++) {
            for (int j = 1; j <= str2Len; j++) {
                if (s1.charAt(i - 1) == s2.charAt(j - 1)) {//对应公式第二条相等
                    cLenNUm[i][j] = cLenNUm[i - 1][j - 1] + 1;
                } else {//对应公式第三条不相等
                    cLenNUm[i][j] = Math.max(cLenNUm[i][j - 1], cLenNUm[i - 1][j]);
                }
            }
        }

        //反推结果
        int i = str1Len;
        int j = str2Len;
        StringBuffer sb = new StringBuffer();//作为结果
        while (i > 0 && j > 0) {//这里其实处理了i=0,j=0的,对应公式0的反推场景
            if (s1.charAt(i - 1) == s2.charAt(j - 1)) {//反推公式中不相等的场景
                //该值一定是被选取到的,根据之前的公式,知道两条字符串的下标都前进一位
                sb.append(s1.charAt(i - 1));
                i--;
                j--;
            } else {//对应公式中不相等的反推场景
                if (cLenNUm[i][j - 1] > cLenNUm[i - 1][j]) {//找大的那个方向,此处是左边大于上面,则该处的结果是来自左边
                    j--;
                } else if (cLenNUm[i][j - 1] < cLenNUm[i - 1][j]) {
                    i--;
                } else if (cLenNUm[i][j - 1] == cLenNUm[i - 1][j]) {
                    //对于有分支的可能时,我们选取单方向
                    j--;   //此结果对于结果1所选取方向,str1的下标左移一位.替换为j--,则结果对应与结果2选取的方向
                }
            }
        }
        //由于是从后往前加入字符的,需要反转才能得到正确结果
        return sb.reverse().toString();
    }
}