在Powershell中进入相关目录
dir | group {$_.CreationTime.ToShortDateString()} | select Name > Name.csv
dir | group {$_.CreationTime.ToShortDateString()} | select Count > Count.csv
Pandas处理
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
data = pd.read_csv("Name.csv", skip_blank_lines=True, encoding='utf-16', names=['Name'])
data2 = pd.read_csv("Count.csv", skip_blank_lines=True, encoding='utf-16',names=['Count'])
df = pd.DataFrame(data)
df.dropna(how="all", inplace=True)
df2 = pd.DataFrame(data2)
df2.dropna(how="all", inplace=True)
df = df.join(df2)
df = df.drop(0)
df = df.drop(1)
df['Name'] = pd.to_datetime(df['Name'], dayfirst=True)
df['Count'] = pd.to_numeric(df['Count'])
df= df.sort_values(by=['Name'])
print(df)
df.plot(kind = 'scatter', x = 'Name', y = 'Count')
df.to_csv("plt.csv")
plt.show()
Downloads文件夹
C:\Program Files
C:\Program Files (x86)
C:\Windows