PHP 生成器模式讲解和代码示例

112 阅读2分钟

文章来源refactoringguru.cn/design-patt…

PHP 生成器模式讲解和代码示例

生成器是一种创建型设计模式, 使你能够分步骤创建复杂对象。

与其他创建型模式不同, 生成器不要求产品拥有通用接口。 这使得用相同的创建过程生成不同的产品成为可能。

** 进一步了解生成器模式 **

复杂度:******

流行度:******

使用示例: 生成器模式是 PHP 世界中的一个著名模式。 当你需要创建一个可能有许多配置选项的对象时, 该模式会特别有用。

识别方法: 生成器模式可以通过类来识别, 它拥有一个构建方法和多个配置结果对象的方法。 生成器方法通常支持方法链 (例如 someBuilder->​setValueA(1)->​setValueB(2)->​create())。

概念示例真实世界示例

概念示例

本例说明了生成器设计模式的结构并重点回答了下面的问题:

  • 它由哪些类组成?
  • 这些类扮演了哪些角色?
  • 模式中的各个元素会以何种方式相互关联?

了解该模式的结构后, 你可以更轻松地理解下面基于真实世界的 PHP 应用案例。

** index.php:  概念示例

<?php

namespace RefactoringGuru\Builder\Conceptual;

/**
 * The Builder interface specifies methods for creating the different parts of
 * the Product objects.
 */
interface Builder
{
    public function producePartA(): void;

    public function producePartB(): void;

    public function producePartC(): void;
}

/**
 * The Concrete Builder classes follow the Builder interface and provide
 * specific implementations of the building steps. Your program may have several
 * variations of Builders, implemented differently.
 */
class ConcreteBuilder1 implements Builder
{
    private $product;

    /**
     * A fresh builder instance should contain a blank product object, which is
     * used in further assembly.
     */
    public function __construct()
    {
        $this->reset();
    }

    public function reset(): void
    {
        $this->product = new Product1();
    }

    /**
     * All production steps work with the same product instance.
     */
    public function producePartA(): void
    {
        $this->product->parts[] = "PartA1";
    }

    public function producePartB(): void
    {
        $this->product->parts[] = "PartB1";
    }

    public function producePartC(): void
    {
        $this->product->parts[] = "PartC1";
    }

    /**
     * Concrete Builders are supposed to provide their own methods for
     * retrieving results. That's because various types of builders may create
     * entirely different products that don't follow the same interface.
     * Therefore, such methods cannot be declared in the base Builder interface
     * (at least in a statically typed programming language). Note that PHP is a
     * dynamically typed language and this method CAN be in the base interface.
     * However, we won't declare it there for the sake of clarity.
     *
     * Usually, after returning the end result to the client, a builder instance
     * is expected to be ready to start producing another product. That's why
     * it's a usual practice to call the reset method at the end of the
     * `getProduct` method body. However, this behavior is not mandatory, and
     * you can make your builders wait for an explicit reset call from the
     * client code before disposing of the previous result.
     */
    public function getProduct(): Product1
    {
        $result = $this->product;
        $this->reset();

        return $result;
    }
}

/**
 * It makes sense to use the Builder pattern only when your products are quite
 * complex and require extensive configuration.
 *
 * Unlike in other creational patterns, different concrete builders can produce
 * unrelated products. In other words, results of various builders may not
 * always follow the same interface.
 */
class Product1
{
    public $parts = [];

    public function listParts(): void
    {
        echo "Product parts: " . implode(', ', $this->parts) . "\n\n";
    }
}

/**
 * The Director is only responsible for executing the building steps in a
 * particular sequence. It is helpful when producing products according to a
 * specific order or configuration. Strictly speaking, the Director class is
 * optional, since the client can control builders directly.
 */
class Director
{
    /**
     * @var Builder
     */
    private $builder;

    /**
     * The Director works with any builder instance that the client code passes
     * to it. This way, the client code may alter the final type of the newly
     * assembled product.
     */
    public function setBuilder(Builder $builder): void
    {
        $this->builder = $builder;
    }

    /**
     * The Director can construct several product variations using the same
     * building steps.
     */
    public function buildMinimalViableProduct(): void
    {
        $this->builder->producePartA();
    }

    public function buildFullFeaturedProduct(): void
    {
        $this->builder->producePartA();
        $this->builder->producePartB();
        $this->builder->producePartC();
    }
}

/**
 * The client code creates a builder object, passes it to the director and then
 * initiates the construction process. The end result is retrieved from the
 * builder object.
 */
function clientCode(Director $director)
{
    $builder = new ConcreteBuilder1();
    $director->setBuilder($builder);

    echo "Standard basic product:\n";
    $director->buildMinimalViableProduct();
    $builder->getProduct()->listParts();

    echo "Standard full featured product:\n";
    $director->buildFullFeaturedProduct();
    $builder->getProduct()->listParts();

    // Remember, the Builder pattern can be used without a Director class.
    echo "Custom product:\n";
    $builder->producePartA();
    $builder->producePartC();
    $builder->getProduct()->listParts();
}

$director = new Director();
clientCode($director);

** Output.txt:  执行结果

Standard basic product:
Product parts: PartA1

Standard full featured product:
Product parts: PartA1, PartB1, PartC1

Custom product:
Product parts: PartA1, PartC1

概念示例真实世界示例