DP相关算法模板

116 阅读2分钟

1.最长上升子序列

300. 最长递增子序列 - 力扣(Leetcode)

输入: nums = [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长递增子序列是 [2,3,7,101],因此长度为 4 。
nums = [10, 9, 2, 5, 3, 7, 101, 18]
if not nums:
    print(0)
dp = [1 for _ in range(len(nums))]
for i in range(1, len(nums)):
    for j in range(i):
        if nums[j] < nums[i]:
            dp[i] = max(dp[i], dp[j] + 1)
print(max(dp))

2.最长--连续--子序列

输入: nums = [10,9,2,5,3,7,101,18]
输出: 3
解释: 最长递增子序列是 [3,7,101],因此长度为 3 。
nums = [10, 9, 2, 5, 3, 7, 101, 18]
dp = [1 for _ in range(len(nums))]
for i in range(2, len(nums)):
    if nums[i] >= nums[i - 1]:
        dp[i] = dp[i - 1] + 1
    else:
        dp[i] = 1
print(max(dp))

3.最长公共子序列

1143. 最长公共子序列 - 力扣(Leetcode)

基础版

输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m = len(text1)
        n = len(text2)

        res = ""
        # 记录最长的公共子序列

        if m * n == 0:
            return 0

        dp = [[0] * (n + 1) for _ in range(m + 1)]
        # dp[i][j]表示text1[:i]与text2[:j]的最长公共子序列长度

        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                    res += text1[i - 1]
                else:
                    dp[i][j] = max([dp[i - 1][j], dp[i][j - 1]])
        print(res)
        return dp[m][n]


text1 = "abcde"
text2 = "ace"
obj = Solution()
res = obj.longestCommonSubsequence(text1, text2)
print(res)

简易版

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        n=len(text1)
        m=len(text2)
        @cache
        def dfs(i,j):
            if i<0 or j<0:
                return 0
            if text1[i]==text2[j]:
                return dfs(i-1,j-1)+1 #+1意味着text1[1]=text2[j]都选
            return max(dfs(i-1,j),dfs(i,j-1))  #都不选
        return dfs(n-1,m-1)

4.最长公共子串

注意最长公共子序列和最长公共子串的区别
最长公共子串要求连续

输入:text1 = "helloworld", text2 = "loop"
输出:2
解释:最长公共子序列是 "lo" ,它的长度为 2 。
class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        m = len(text1)
        n = len(text2)

        res = ""
        # 记录最长的公共子序列

        if m * n == 0:
            return 0

        dp = [[0] * (n + 1) for _ in range(m + 1)]
        # dp[i][j]表示text1[:i]与text2[:j]的最长公共子序列长度
        result = 0
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if text1[i - 1] == text2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                    res += text1[i - 1]
                    result = max(result, dp[i][j])
        print(result)
        return dp[m][n]


text1 = "helloworld"
text2 = "loop"
obj = Solution()
res = obj.longestCommonSubsequence(text1, text2)