Day42 动态规划 LeetCode 416

65 阅读1分钟

01 背包的理论

N个物品,每个物品只有一个,物品对应重量weight[i], 对应价值value[i],背包容量V,求最大能装的价值

核心理解dp数组、迭代公式、初始化、遍历顺序

二维数组

void test_2_wei_bag_problem1() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagweight = 4;

    // 二维数组
    vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));

    // 初始化
    for (int j = weight[0]; j <= bagweight; j++) {
        dp[0][j] = value[0];
    }

    // weight数组的大小 就是物品个数
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
            if (j < weight[i]) dp[i][j] = dp[i - 1][j];
            else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

        }
    }

    cout << dp[weight.size() - 1][bagweight] << endl;
}

int main() {
    test_2_wei_bag_problem1();
}

滚动数组

void test_1_wei_bag_problem() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;

    // 初始化
    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}

int main() {
    test_1_wei_bag_problem();
}

即用一维滚动数组替换二维数组,遍历顺序发生变化,倒序保证物品只取一次,从二维优化而来,原来的状态只取决正上和左上,倒序保证不会被覆盖

416. 分割等和子集

心得

  • 不会

题解

  • 核心在于套用01背包,物品、重量、价值都是nums[i]
class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) {
            sum += nums[i];
        }
        if (sum % 2 == 1) return false;
        int target = sum / 2;
        vector<int> dp(10001, 0);
        for (int i = 0; i < nums.size(); i++) {
            for (int j = target; j >= nums[i]; j--) {
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); // 从大到小,每次只取一次
            }
        }
        if (dp[target] == target) return true;
        return false;

    }
};