01 背包的理论
N个物品,每个物品只有一个,物品对应重量weight[i], 对应价值value[i],背包容量V,求最大能装的价值
核心理解dp数组、迭代公式、初始化、遍历顺序
二维数组
void test_2_wei_bag_problem1() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagweight = 4;
// 二维数组
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
// 初始化
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
cout << dp[weight.size() - 1][bagweight] << endl;
}
int main() {
test_2_wei_bag_problem1();
}
滚动数组
void test_1_wei_bag_problem() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagWeight = 4;
// 初始化
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
int main() {
test_1_wei_bag_problem();
}
即用一维滚动数组替换二维数组,遍历顺序发生变化,倒序保证物品只取一次,从二维优化而来,原来的状态只取决正上和左上,倒序保证不会被覆盖
416. 分割等和子集
心得
- 不会
题解
- 核心在于套用01背包,物品、重量、价值都是nums[i]
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) {
sum += nums[i];
}
if (sum % 2 == 1) return false;
int target = sum / 2;
vector<int> dp(10001, 0);
for (int i = 0; i < nums.size(); i++) {
for (int j = target; j >= nums[i]; j--) {
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); // 从大到小,每次只取一次
}
}
if (dp[target] == target) return true;
return false;
}
};