本文正在参加 人工智能创作者扶持计划
人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。人工智能学科研究的主要内容包括:知识表示、搜索方法、机器学习、知识处理系统、自然语言处理、自动推理、计算机视觉、机器人技术等方面。
-
知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。
-
搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。
-
机器学习是人工智能中的一个重要分支,旨在通过从数据中学习规律和模式来提高系统的性能和预测能力。机器学习算法包括监督学习、无监督学习、半监督学习等。
-
知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。
-
自然语言处理是指将人类语言转化为计算机可理解的形式,并对自然语言进行深入的语义分析和理解。自然语言处理的应用包括机器翻译、问答系统、情感分析等
-
自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。
-
计算机视觉是指让计算机通过相机或其他传感器获取图像信息,以及对这些图像信息进行分析、理解和处理的技术。计算机视觉的应用包括人脸识别、物体检测、图像分割等。
-
机器人技术将计算机科学、机械工程和电子工程等多个领域的知识融合在一起,旨在开发出能够感知环境、执行动作并与人类交互的智能机器人。
人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。AI的核心问题包括推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。强人工智能目前仍然是该领域的长远目标。目前比较流行的方法包括统计方法,计算智能和传统意义的AI。目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。