一、简单概念
1 为什么要用 Redis/为什么要用缓存?
主要从“高性能”和“高并发”这两点来回答这个问题。
高性能:假如用户第一次访问数据库中的某些数据的话,这个过程是比较慢,毕竟是从硬盘中读取的。但是如果用户访问的数据属于高频数据并且不会经常改变的话,那么我们就可以很放心地将该用户访问的数据存在缓存中。这样有什么好处呢? 那就是保证用户下一次再访问这些数据的时候就可以直接从缓存中获取了。操作缓存就是直接操作内存,所以速度相当快。
高并发:一般像 MySQL 这类的数据库的 QPS(服务器每秒可以执行的查询次数;) 大概都在 1w 左右(4 核 8g) ,但是使用 Redis 缓存之后很容易达到 10w+,甚至最高能达到 30w+(就单机 Redis 的情况,Redis 集群的话会更高)。
由此可见,直接操作缓存能够承受的数据库请求数量是远远大于直接访问数据库的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样用户的一部分请求会直接到缓存这里而不用经过数据库。进而,我们也就提高了系统整体的并发。
2 Redis为什么快
Redis 内部做了非常多的性能优化,比较重要的主要有下面 3 点:
- Redis 基于内存,内存的访问速度是磁盘的上千倍;
- Redis 基于 Reactor 模式设计开发了一套高效的事件处理模型,主要是单线程事件循环和 IO 多路复用;
- Redis 内置了多种优化过后的数据结构实现,性能非常高。
二、单线程模型
1 啥是Redis单线程模型?
Redis 基于 Reactor 模式设计开发了一套高效的事件处理模型 (Reactor 模式是高性能 IO 的基石),这套事件处理模型对应的是 Redis 中的文件事件处理器(file event handler)。由于文件事件处理器(file event handler)是单线程方式运行的,所以我们一般都说 Redis 是单线程模型。
下面这段话仔细看:
Redis 基于 Reactor 模式开发了自己的网络事件处理器:这个处理器被称为文件事件处理器
- 文件事件处理器使用 I/O 多路复用(multiplexing)程序来同时监听多个套接字,并根据套接字目前执行的任务来为套接字关联不同的事件处理器。
- 当被监听的套接字准备好执行连接应答(accept)、读取(read)、写入(write)、关 闭(close)等操作时,与操作相对应的文件事件就会产生,这时文件事件处理器就会调用套接字之前关联好的事件处理器来处理这些事件。
虽然文件事件处理器以单线程方式运行,但通过使用 I/O 多路复用程序来监听多个套接字,文件事件处理器既实现了高性能的网络通信模型,又可以很好地与 Redis 服务器中其他同样以单线程方式运行的模块进行对接,这保持了 Redis 内部单线程设计的简单性。
2 既然是单线程,那怎么监听大量的客户端连接呢?
Redis 通过 IO 多路复用程序 来监听来自客户端的大量连接(或者说是监听多个 socket),它会将感兴趣的事件及类型(读、写)注册到内核中并监听每个事件是否发生。
这样的好处非常明显: I/O 多路复用技术的使用让 Redis 不需要额外创建多余的线程来监听客户端的大量连接,降低了资源的消耗。
文件事件处理器(file event handler)主要是包含 4 个部分:
- 多个 socket(客户端连接)
- IO 多路复用程序(支持多个客户端连接的关键)
- 文件事件分派器(将 socket 关联到相应的事件处理器)
- 事件处理器(连接应答处理器、命令请求处理器、命令回复处理器)
虽然说 Redis 是单线程模型,但是,实际上,Redis 在 4.0 之后的版本中就已经加入了对多线程的支持。 不过,Redis 4.0 增加的多线程主要是针对一些大键值对的删除操作的命令,使用这些命令就会使用主线程之外的其他线程来“异步处理”。
3 那 Redis6.0 之前为什么不使用多线程?
- 单线程编程容易并且更容易维护;
- Redis 的性能瓶颈不在 CPU ,主要在内存和网络;
- 多线程就会存在死锁、线程上下文切换等问题,甚至会影响性能。
4 Redis6.0 之后为何引入了多线程?
Redis6.0 引入多线程主要是为了提高网络 IO 读写性能,因为这个算是 Redis 中的一个性能瓶颈(Redis 的瓶颈主要受限于内存和网络)。
虽然Redis6.0 引入了多线程,但是 Redis 的多线程只是在网络数据的读写这类耗时操作上使用了,执行命令仍然是单线程顺序执行。因此,不需要担心线程安全问题。
Redis6.0 的多线程默认是禁用的,只使用主线程。如需开启需要设置 IO 线程数 > 1,需要修改 redis 配置文件 redis.conf
:
io-threads 4 #设置1的话只会开启主线程,官网建议4核的机器建议设置为2或3个线程,8核的建议设置为6个线程
另外:(1) io-threads 的个数一旦设置,不能通过 config 动态设置。(2)当设置 ssl 后,io-threads 将不工作。
但是官网描述开启多线程读并不能有太大提升,因此一般情况下并不建议开启。
注:由单个命令实现的所有 Redis 操作都是原子操作,包括对更复杂的数据结构进行操作的操作。因此,当使用修改某些值的 Redis 命令时,不必考虑并发访问。
三、IO多路复用详解
1 5种I/O模型介绍
- 阻塞 I0 ( Blocking I0)
- 非阻塞 I0 (Nonblocking I0)
- I0多路复用(I0 Multiplexing)
- 信号驱动I0 (Signal Driven I0 )
- 异步I0 (Asynchronous I0)
阻塞IO:
- 用户应用请求内核是否有新的网络数据
- 如果没有数据,就阻塞直到有数据到来
- 等待内核将数据拷贝到用户空间
- 用户应用处理数据
非阻塞IO:
- 用户应用请求内核是否有新的网络数据
- 如果没有数据,内核直接返回没数据,用户应用可以隔一段时间再来请求。
- 等待内核将数据拷贝到用户空间
- 用户应用处理数据
以上可以看出来,根据等待数据的方式不同,分为阻塞和非阻塞。阻塞IO在请求内核数据的时候,没有数据就会一直阻塞直到获取数据。非阻塞IO在等待内核数据的时候,没有数据就会得到没数据的结果,应用可以进行其他动作。
同步IO:
同步IO的主要看内核数据到用户空间的过程是同步进行的就是同步IO,异步IO首先是非阻塞IO,区别在于成功标志的时机。异步IO连内核到用户态的数据拷贝都是异步的,直到数据拷贝完成,才会回调一个信号,通知一切已经准备完成。用户应用此时就可以直接处理结果了。
Redis的IO多路复用:
如果是阻塞IO也就是BIO,那么在一个fd(文件描述符)没有数据的时候,就是阻塞一直等待,如果同时有多个fd,对于单线程来说,只能一直等第一个有数据,然后再接着处理第二个,效率很慢。
如果是非阻塞IO也就是NIO,会有顾客没点完餐,然后造成CPU一直在询问一直空转的情况。
因此引入了IO多路复用模型:利用单个线程来同时监听多个FD,并在某个FD可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。
2 为什么Redis中要用I/O多路复用技术呢?
「I/O 多路复用」 就是为了解决服务端一直阻塞等待某一个 client 的数据到来,即使其他client的数据提前到来,也不会被处理的问题。 因为 Redis 是跑在单线程 中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入 或 输出都是阻塞的」,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导,致整个进程无法对其它客户提供服务。而 I/O 多路复用就是为了解决这个问题而出现的:「为了让单线程(进程)的服务端应用同时处理多个客户端的事件,Redis 采用了 IO 多路复用机制。」
这里“多路”「指的是多个网络连接客户端,」 “复用” 指的是复用同一个线程(单进程)。I/O 多路复用其实是使用一个线程来检查多个 Socket 的就绪状态,在单个线程中通过记录跟踪每一个 socket(I/O流)的状态来管理处理多个 I/O 流。
3 Redis I/O复用模型
文件描述符(file descriptor):
Linux 系统中,把一切都看做是文件,当进程打开现有文件或创建新文件时,内核向进程返回一个文件描述符。可以理解文件描述符是一个索引,这样,要操作文件的时候,我们直接找到索引就可以对其进行操作了。我们将这个索引叫做文件描述符(file descriptor),简称fd。
(1)一个 socket 客户端与服务端连接时,会生成对应一个套接字描述符(套接字描述符是文件描述符FD的一种),每一个 socket 网络连接其实都对应一个文件描述符。
(2)多个客户端与服务端连接时,Redis 使用 「I/O 多路复用程序」 将客户端 socket 对应的 FD 注册到监听列表(一个队列)中。当客服端执行 read、write 等操作命令时,I/O 多路复用程序会将命令封装成一个事件,并绑定到对应的 FD 上。
(3)「文件事件处理器」 使用 I/O 多路复用模块同时监控多个文件描述符(FD)的读写情况,当 accept
、read
、write
和 close
文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器进行处理相关命令操作。
#例如:以 Redis 的 I/O 多路复用程序 epoll 函数为例
多个客户端连接服务端时,Redis 会将客户端 socket 对应的 fd 注册进 epoll,然后 epoll 同时监听多个文件描述符(FD)是否有数据到来,如果有数据来了就通知事件处理器赶紧处理,这样就不会存在服务端一直等待某个客户端给数据的情形。
#(I/O多路复用程序函数有 select、poll、epoll、kqueue)
(4)整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,当其中一个 client 端达到写或读的状态,文件事件处理器就马上执行,从而就不会出现 I/O 堵塞的问题,提高了网络通信的性能。 (5) I/O 多路复用模型是利用 select、poll、epoll 函数可以同时监察多个流的 I/O 事件的能力,在空闲的时候,会把当前线程阻塞掉。当有一个或多个流有 I/O 事件时,就从阻塞态中唤醒,于是程序就会轮询一遍所有的流(epoll 是只轮询那些真正发出了事件的流),依次顺序的处理就绪的流,这种做法就避免了大量无用的等待操作。
4 I/O多路复用实现函数
1.select:
select是Linux中最早的I/O多路复用实现方案,并且windows操作系统上只支持select。这就是window发挥不出redis的最大性能的一个原因。
select函数的缺点
- 单个进程所打开的FD是有限制的,通过 FD_SETSIZE 设置,默认1024
- 每次调用 select,都需要把 fd 集合从用户态拷贝到内核态,这个开销在 fd 很多时会很大
- 每次调用select都需要将进程加入到所有监视socket的等待队列,每次唤醒都需要从每个队列中移除
- select函数在每次调用之前都要对参数进行重新设定,这样做比较麻烦,而且会降低性能
- 进程被唤醒后,程序并不知道哪些socket收到数据,还需要遍历一次
2.poll:
poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态, 但是它没有最大连接数的限制,原因是它是基于链表来存储的
poll还是没有解决需要遍历判断fd事件的方式,只是增加了监听数量,在fd很多的情况下,性能下降的更加严重。
3.epoll:
不同于select、poll的轮询机制,epoll采用的是事件驱动机制,每个fd上注册有回调函数,当网卡接收到数据时会回调该函数,同时将该fd的引用放入rdlist就绪列表中。
当调用epoll_wait检查是否有事件发生时,只需要检查eventpoll对象中的rdlist双链表中是否有epitem元素即可。如果rdlist不为空,则把发生的事件复制到用户态,同时将事件数量返回给用户。
epoll优点 :
- EPOLL支持的最大文件描述符上限是整个系统最大可打开的文件数目, 1G内存理论上最大创建10万个文件描述符
- 每个文件描述符上都有一个callback函数,当socket有事件发生时会回调这个函数将该fd的引用添加到就绪列表中,select和poll并不会明确指出是哪些文件描述符就绪,而epoll会。造成的区别就是,系统调用返回后,调用select和poll的程序需要遍历监听的整个文件描述符找到是谁处于就绪,而epoll则直接处理即可。(通俗理解:举栗说明: 如果领导要验收 check每个员工的工作,遍历一次所有员工,直接完成的合并到 Git 分支,如果任务没有完成的,告诉员工待完成之后,其应该做 xx 操作(制定一些列的流程规范)。这样只需要定期 check 指定的关键节点就好了。这就是 epoll。)
- select、poll采用轮询的方式来检查文件描述符是否处于就绪态,而epoll采用回调机制。造成的结果就是,随着fd的增加,select和poll的效率会线性降低,而epoll不会受到太大影响,除非活跃的socket很多。
四、Redis内存管理
1 Redis 给缓存数据设置过期时间的手段
Redis 自带了给缓存数据设置过期时间的功能,比如:
127.0.0.1:6379> expire key 60 # 数据在 60s 后过期
(integer) 1
127.0.0.1:6379> setex key 60 value # 数据在 60s 后过期 (setex:[set] + [ex]pire)
OK
127.0.0.1:6379> ttl key # 查看数据还有多久过期
(integer) 56
注意:Redis 中除了字符串类型有自己独有设置过期时间的命令 setex
外,其他方法都需要依靠 expire
命令来设置过期时间 。 另外, persist
命令可以移除一个键的过期时间。
2 过期时间除了有助于缓解内存的消耗,还有什么其他用么?
很多时候的业务场景就是需要某个数据只在某一时间段内存在,比如短信验证码可能只在 1 分钟内有效,用户登录的 token 可能只在 1 天内有效。如果使用传统的数据库来处理的话,一般都是自己判断过期,这样更麻烦并且性能要差很多。
3 Redis 是如何判断数据是否过期的呢?
Redis 通过一个叫做过期字典(可以看作是 hash 表)来保存数据过期的时间。过期字典的键指向 Redis 数据库中的某个 key(键),过期字典的值是一个 long long 类型的整数,这个整数保存了 key 所指向的数据库键的过期时间(毫秒精度的 UNIX 时间戳)。
过期字典是存储在 redisDb 这个结构里的:
typedef struct redisDb {
...
dict *dict; //数据库键空间,保存着数据库中所有键值对
dict *expires // 过期字典,保存着键的过期时间
...
} redisDb;
4 过期数据的删除策略了解么?
如果假设你设置了一批 key 只能存活 1 分钟,那么 1 分钟后,Redis 是怎么对这批 key 进行删除的呢?
常用的过期数据的删除策略就两个(重要!自己造缓存轮子的时候需要格外考虑的东西):
- 惰性删除 :只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。
- 定期删除 : 每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。
定期删除对内存更加友好,惰性删除对 CPU 更加友好。两者各有千秋,所以 Redis 采用的是 定期删除+惰性/懒汉式删除 。
但是,仅仅通过给 key 设置过期时间还是有问题的。因为还是可能存在定期删除和惰性删除漏掉了很多过期 key 的情况。这样就导致大量过期 key 堆积在内存里,然后就 Out of memory 了。
怎么解决这个问题呢?答案就是:Redis 内存淘汰机制。
5 Redis 内存淘汰机制了解么?
相关问题:MySQL 里有 2000w 数据,Redis 中只存 20w 的数据,如何保证 Redis 中的数据都是热点数据?
Redis 提供 6 种数据淘汰策略:
- volatile-lru(least recently used) :从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
- volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
- volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
- allkeys-lru(least recently used) :当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)
- allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
- no-eviction:禁止驱逐数据,也就是说当内存不足以容纳新写入数据时,新写入操作会报错。这个应该没人使用吧!
4.0 版本后增加以下两种:
- volatile-lfu(least frequently used) :从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰
- allkeys-lfu(least frequently used) :当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的 key
五、Redis持久化机制
很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机器、机器故障之后恢复数据),或者是为了防止系统故障而将数据备份到一个远程位置。
Redis支持两种不同的持久化操作。Redis 的一种持久化方式叫快照(snapshotting,RDB),另一种方式是只追加文件(append-only file, AOF) 。这两种方法各有千秋,下面逐一介绍:
1 什么是 RDB 持久化?
快照持久化是 Redis 默认采用的持久化方式,在 redis.conf
配置文件中默认有此下配置:
save 900 1 #在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发bgsave命令创建快照。
save 60 10000 #在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发bgsave命令创建快照。
Redis 可以通过创建快照来获得存储在内存里面的数据在某个时间点上的副本。Redis 创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis 主从结构,主要用来提高 Redis 性能),还可以将快照留在原地以便重启服务器的时候使用。
2 RDB 创建快照时会阻塞主线程吗?
Redis 提供了两个命令来生成 RDB 快照文件:
save
: 同步保存操作,会阻塞 Redis 主线程;bgsave
: fork 出一个子进程,子进程执行,不会阻塞 Redis 主线程,默认选项。
这里说 Redis 主线程而不是主进程的主要是因为 Redis 启动之后主要是通过单线程的方式完成主要的工作。
3 什么是 AOF 持久化?
与快照持久化相比,AOF 持久化的实时性更好,因此已成为主流的持久化方案。默认情况下 Redis 没有开启 AOF持久化,可以通过 appendonly 参数开启:
appendonly yes
开启 AOF 持久化后每执行一条会更改 Redis 中的数据的命令,Redis 就会将该命令写入到内存缓存 server.aof_buf
中,然后再根据 appendfsync
配置来决定何时将其同步到硬盘中的 AOF 文件。
AOF 文件的保存位置和 RDB 文件的位置相同,都是通过 dir 参数设置的,默认的文件名是 appendonly.aof
。
在 Redis 的配置文件中存在三种不同的 AOF 持久化方式,它们分别是:
appendfsync always #每次有数据修改发生时都会写入AOF文件,这样会严重降低Redis的速度
appendfsync everysec #每秒钟同步一次,显式地将多个写命令同步到硬盘
appendfsync no #让操作系统决定何时进行同步
为了兼顾数据和写入性能,用户可以考虑 appendfsync everysec
选项 ,让 Redis 每秒同步一次 AOF 文件,Redis 性能几乎没受到任何影响。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis 还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。
4 如何选择 RDB 和 AOF?
关于 RDB 和 AOF 的优缺点,官网上面也给了比较详细的说明Redis persistenceopen in new window,这里结合自己的理解简单总结一下。
RDB 比 AOF 优秀的地方 :
- RDB 文件存储的内容是经过压缩的二进制数据, 保存着某个时间点的数据集,文件很小,适合做数据的备份,灾难恢复。AOF 文件存储的是每一次写命令,类似于 MySQL 的 binlog 日志,通常会必 RDB 文件大很多。当 AOF 变得太大时,Redis 能够在后台自动重写 AOF。新的 AOF 文件和原有的 AOF 文件所保存的数据库状态一样,但体积更小。不过, Redis 7.0 版本之前,如果在重写期间有写入命令,AOF 可能会使用大量内存,重写期间到达的所有写入命令都会写入磁盘两次。
- 使用 RDB 文件恢复数据,直接解析还原数据即可,不需要一条一条地执行命令,速度非常快。而 AOF 则需要依次执行每个写命令,速度非常慢。也就是说,与 AOF 相比,恢复大数据集的时候,RDB 速度更快。
AOF 比 RDB 优秀的地方 :
- RDB 的数据安全性不如 AOF,没有办法实时或者秒级持久化数据。生成 RDB 文件的过程是比较繁重的, 虽然 BGSAVE 子进程写入 RDB 文件的工作不会阻塞主线程,但会对机器的 CPU 资源和内存资源产生影响,严重的情况下甚至会直接把 Redis 服务干宕机。AOF 支持秒级数据丢失(取决 fsync 策略,如果是 everysec,最多丢失 1 秒的数据),仅仅是追加命令到 AOF 文件,操作轻量。
- RDB 文件是以特定的二进制格式保存的,并且在 Redis 版本演进中有多个版本的 RDB,所以存在老版本的 Redis 服务不兼容新版本的 RDB 格式的问题。
- AOF 以一种易于理解和解析的格式包含所有操作的日志。你可以轻松地导出 AOF 文件进行分析,你也可以直接操作 AOF 文件来解决一些问题。比如,如果执行
FLUSHALL
命令意外地刷新了所有内容后,只要 AOF 文件没有被重写,删除最新命令并重启即可恢复之前的状态。 Redis 4.0 对于持久化机制做了什么优化?
由于 RDB 和 AOF 各有优势,于是,Redis 4.0 开始支持 RDB 和 AOF 的混合持久化(默认关闭,可以通过配置项 aof-use-rdb-preamble
开启)。
如果把混合持久化打开,AOF 重写的时候就直接把 RDB 的内容写到 AOF 文件开头。这样做的好处是可以结合 RDB 和 AOF 的优点, 快速加载同时避免丢失过多的数据。当然缺点也是有的, AOF 里面的 RDB 部分是压缩格式不再是 AOF 格式,可读性较差。
5 AOF 日志是如何实现的?
关系型数据库(如 MySQL)通常都是执行命令之前记录日志(方便故障恢复),而 Redis AOF 持久化机制是在执行完命令之后再记录日志。
为什么是在执行完命令之后记录日志呢?
- 避免额外的检查开销,AOF 记录日志不会对命令进行语法检查;
- 在命令执行完之后再记录,不会阻塞当前的命令执行。
这样也带来了风险(我在前面介绍 AOF 持久化的时候也提到过):
- 如果刚执行完命令 Redis 就宕机会导致对应的修改丢失;
- 可能会阻塞后续其他命令的执行(AOF 记录日志是在 Redis 主线程中进行的)。
6 AOF重写机制
当 AOF 变得太大时,Redis 能够在后台自动重写 AOF 产生一个新的 AOF 文件,这个新的 AOF 文件和原有的 AOF 文件所保存的数据库状态一样,但体积更小。
AOF 重写是一个有歧义的名字,该功能是通过读取数据库中的键值对来实现的,程序无须对现有 AOF 文件进行任何读入、分析或者写入操作。
在执行 BGREWRITEAOF
命令时,Redis 服务器会维护一个 AOF 重写缓冲区,该缓冲区会在子进程创建新 AOF 文件期间,记录服务器执行的所有写命令。当子进程完成创建新 AOF 文件的工作之后,服务器会将重写缓冲区中的所有内容追加到新 AOF 文件的末尾,使得新的 AOF 文件保存的数据库状态与现有的数据库状态一致。最后,服务器用新的 AOF 文件替换旧的 AOF 文件,以此来完成 AOF 文件重写操作。
Redis 7.0 版本之前,如果在重写期间有写入命令,AOF 可能会使用大量内存,重写期间到达的所有写入命令都会写入磁盘两次。
六 、其他
1 分布式缓存其他技术方案
Memcached:分布式缓存的话,比较老牌同时也是使用的比较多的还是 Memcached 和 Redis。不过,现在基本没有看过还有项目使用 Memcached 来做缓存,都是直接用 Redis。Memcached 是分布式缓存最开始兴起的那会,比较常用的。后来,随着 Redis 的发展,大家慢慢都转而使用更加强大的 Redis 了。
Tedis:腾讯也开源了一款类似于 Redis 的分布式高性能 KV 存储数据库,100% 兼容 Redis 协议和 Redis4.0 所有数据模型,名为Tendis。从这个项目的 Github 提交记录可以看出,Tendis 开源版几乎已经没有被维护更新了,加上其关注度并不高,使用的公司也比较少。因此,不建议使用 Tendis 来实现分布式缓存。
2 Redis的其他功能
- 分布式锁 : 通过 Redis 来做分布式锁是一种比较常见的方式。通常情况下,我们都是基于 Redisson 来实现分布式锁。关于 Redis 实现分布式锁的详细介绍:分布式锁详解open in new window 。
- 限流 :一般是通过 Redis + Lua 脚本的方式来实现限流。相关阅读:《我司用了 6 年的 Redis 分布式限流器,可以说是非常厉害了!》open in new window。
- 消息队列 :Redis 自带的 list 数据结构可以作为一个简单的队列使用。Redis 5.0 中增加的 Stream 类型的数据结构更加适合用来做消息队列。它比较类似于 Kafka,有主题和消费组的概念,支持消息持久化以及 ACK 机制。
- 复杂业务场景 :通过 Redis 以及 Redis 扩展(比如 Redisson)提供的数据结构,我们可以很方便地完成很多复杂的业务场景比如通过 bitmap 统计活跃用户、通过 sorted set 维护排行榜。
Redis做消息队列
:edis 5.0 新增加的一个数据结构 Stream
可以用来做消息队列,Stream
支持:
- 发布 / 订阅模式
- 按照消费者组进行消费
- 消息持久化( RDB 和 AOF)
不过,和专业的消息队列相比,还是有很多欠缺的地方比如消息丢失和堆积问题不好解决。因此,我们通常建议是不使用 Redis 来做消息队列的,你完全可以选择市面上比较成熟的一些消息队列比如 RocketMQ、Kafka。