QUIC
QUIC: 基于 UDP 实现的可靠传输协议
在HTTP3中,UDP报文头部与HTTP消息之间,有3层头部
Packet header
Packet Header 细分这两种:
- Long Packet Header 用于首次建立连接。
- Short Packet Header 用于日常传输数据。
QUIC 也是需要三次握手来建立连接的,主要目的是为了协商连接 ID。协商出连接 ID 后,后续传输时,双方只需要固定住连接 ID,从而实现连接迁移功能
Short Packet Header 中的 Packet Number 是每个报文独一无二的编号,它是严格递增的,也就是说就算 Packet N 丢失了,重传的 Packet N 的 Packet Number 已经不是 N,而是一个比 N 大的值
QUIC 报文中的 Pakcet Number 是严格递增的, 即使是重传报文,它的 Pakcet Number 也是递增的,这样就能更加精确计算出报文的 RTT
QUIC 使用的 Packet Number 单调递增的设计,可以让数据包不再像 TCP 那样必须有序确认,QUIC 支持乱序确认,当数据包Packet N 丢失后,只要有新的已接收数据包确认,当前窗口就会继续向右滑动
QUIC Frame Header
一个 Packet 报文中可以存放多个 QUIC Frame。
每一个 Frame 都有明确的类型,针对类型的不同,功能也不同,自然格式也不同。
Stream 类型的 Frame 格式,Stream 可以认为就是一条 HTTP 请求
- Stream ID 作用:多个并发传输的 HTTP 消息,通过不同的 Stream ID 加以区别,类似于 HTTP2 的 Stream ID;
- Offset 作用:类似于 TCP 协议中的 Seq 序号,保证数据的顺序性和可靠性;
- Length 作用:指明了 Frame 数据的长度
通过 Stream ID + Offset 字段信息实现数据的有序性,通过比较两个数据包的 Stream ID 与 Stream Offset ,如果都是一致,就说明这两个数据包的内容一致
如图,数据包 Packet N 丢失了,后面重传该数据包的编号为 Packet N+2,丢失的数据包和重传的数据包 Stream ID 与 Offset 都一致,说明这两个数据包的内容一致。这些数据包传输到接收端后,接收端能根据 Stream ID 与 Offset 字段信息将 Stream x 和 Stream x+y 按照顺序组织起来,然后交给应用程序处理
QUIC 通过单向递增的 Packet Number,配合 Stream ID 与 Offset 字段信息,可以支持乱序确认而不影响数据包的正确组装
QUIC 如何解决TCP队头阻塞
TCP 队头阻塞的问题,其实就是接收窗口的队头阻塞问题。接收方收到的数据范围必须在接收窗口范围内,如果收到超过接收窗口范围的数据,就会丢弃该数据,比如下图接收窗口的范围是 32 ~ 51 字节,如果收到第 52 字节以上数据都会被丢弃
接收窗口什么时候才能滑动?当接收窗口收到有序数据时,接收窗口才能往前滑动,然后那些已经接收并且被确认的「有序」数据就可以被应用层读取,当接收窗口收到的数据不是有序的,比如收到第 33~40 字节的数据,由于第 32 字节数据没有收到, 接收窗口无法向前滑动,那么即使先收到第 33~40 字节的数据,这些数据也无法被应用层读取的
导致接收窗口的队头阻塞问题,是因为 TCP 必须按序处理数据,也就是 TCP 层为了保证数据的有序性,只有在处理完有序的数据后,滑动窗口才能往前滑动,否则就停留
HTTP/2 多个 Stream 请求都是在一条 TCP 连接上传输,这意味着多个 Stream 共用同一个 TCP 滑动窗口,那么当发生数据丢失,滑动窗口是无法往前移动的,此时就会阻塞住所有的 HTTP 请求,这属于 TCP 层队头阻塞
QUIC 给每一个 Stream 都分配了一个独立的滑动窗口,这样使得一个连接上的多个 Stream 之间没有依赖关系,都是相互独立的,各自控制的滑动窗口,Stream2 丢了一个 UDP 包,也只会影响 Stream2 的处理,不会影响其他 Stream,与 HTTP/2 不同,HTTP/2 只要某个流中的数据包丢失了,其他流也会因此受影响
QUIC 流量控制
QUIC 实现流量控制的方式:
- 通过 window_update 帧告诉对端自己可以接收的字节数,这样发送方就不会发送超过这个数量的数据。
- 通过 BlockFrame 告诉对端由于流量控制被阻塞了,无法发送数据
QUIC 实现了自己的流量控制机制,QUIC 的滑动窗口滑动的条件跟 TCP 有一点差别,但是同一个 Stream 的数据也是要保证顺序的,不然无法实现可靠传输,因此同一个 Stream 的数据包丢失了,也会造成窗口无法滑动
QUIC 实现了两种级别的流量控制,分别为 Stream 和 Connection 两种级别:
- Stream 级别的流量控制:Stream 可以认为就是一条 HTTP 请求,每个 Stream 都有独立的滑动窗口,所以每个 Stream 都可以做流量控制,防止单个 Stream 消耗连接(Connection)的全部接收缓冲。
- Connection 流量控制:限制连接中所有 Stream 相加起来的总字节数,防止发送方超过连接的缓冲容量
Stream 级别的流量控制
初始状态
接收到消息
接收窗口的左边界取决于接收到的最大偏移字节数,此时的接收窗口 = 最大窗口数 - 接收到的最大偏移数
QUIC 的流量控制和 TCP 有点区别了:
- TCP 的接收窗口只有在前面所有的 Segment 都接收的情况下才会移动左边界,当在前面还有字节未接收但收到后面字节的情况下,窗口也不会移动。
- QUIC 的接收窗口的左边界滑动条件取决于接收到的最大偏移字节数
右边界滑动条件:
当图中的绿色部分数据超过最大接收窗口的一半后,最大接收窗口向右移动,接收窗口的右边界也向右扩展,同时给对端发送「窗口更新帧」,当发送方收到接收方的窗口更新帧后,发送窗口的右边界也会往右扩展,以此达到窗口滑动的效果
QUIC 对拥塞控制的改进
QUIC 协议当前默认使用了 TCP 的 Cubic 拥塞控制算法(慢开始、拥塞避免、快重传、快恢复策略),同时也支持 CubicBytes、Reno、RenoBytes、BBR、PCC 等拥塞控制算法,相当于将 TCP 的拥塞控制算法照搬过来了
QUIC 处于应用层,所以就可以针对不同的应用设置不同的拥塞控制算法,这样灵活性就很高
QUIC 更快的连接
对于 HTTP/1 和 HTTP/2 协议,TCP 和 TLS 是分层的,分别属于内核实现的传输层、openssl 库实现的表示层,因此它们难以合并在一起,需要分批次来握手,先 TCP 握手(1RTT),再 TLS 握手(2RTT),所以需要 3RTT 的延迟才能传输数据
HTTP/3 在传输数据前虽然需要 QUIC 协议握手,这个握手过程只需要 1 RTT,握手的目的是为确认双方的「连接 ID」,连接迁移就是基于连接 ID 实现的
HTTP/3 的 QUIC 协议并不是与 TLS 分层,而是QUIC 内部包含了 TLS,它在自己的帧会携带 TLS 里的“记录”,再加上 QUIC 使用的是 TLS1.3,因此仅需 1 个 RTT 就可以「同时」完成建立连接与密钥协商,甚至在第二次连接的时候,应用数据包可以和 QUIC 握手信息(连接信息 + TLS 信息)一起发送,达到 0-RTT 的效果
QUIC 连接迁移
基于 TCP 传输协议的 HTTP 协议,由于是通过四元组(源 IP、源端口、目的 IP、目的端口)确定一条 TCP 连接
当移动设备的网络从 4G 切换到 WIFI 时,意味着 IP 地址变化了,那么就必须要断开连接,然后重新建立 TCP 连接
QUIC 协议没有用四元组的方式来“绑定”连接,而是通过连接 ID来标记通信的两个端点,客户端和服务器可以各自选择一组 ID 来标记自己,因此即使移动设备的网络变化后,导致 IP 地址变化了,只要仍保有上下文信息(比如连接 ID、TLS 密钥等),就可以“无缝”地复用原连接,消除重连的成本