**摘要:**赛题以金融风控中的个人信贷为背景,要求选手根据贷款申请人的数据信息预测其是否有违约的可能,以此判断是否通过此项贷款,这是一个典型的分类问题。赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。比赛链接——天池
赛题理解
部分字段表,详细的请看赛题与数据中。
评测标准:
本次比赛的评价方法为AUC评估模型效果(越大越好)。现在来看看什么是AUC。
混淆矩阵(Confuse Matrix)
- 若一个实例是正类,并且被预测为正类,即为真正类TP(True Positive )
- 若一个实例是正类,但是被预测为负类,即为假负类FN(False Negative )
- 若一个实例是负类,但是被预测为正类,即为假正类FP(False Positive )
- 若一个实例是负类,并且被预测为负类,即为真负类TN(True Negative )
ROC空间将假正例率(FPR)定义为 X 轴,真正例率(TPR)定义为 Y 轴。
TPR:在所有实际为正例的样本中,被正确地判断为正例之比率。 FPR:在所有实际为负例的样本中,被错误地判断为正例之比率。
这是百度百科中关于AUC介绍的一张图。
AUC(Area Under Curve)被定义为ROC曲线下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。
结果提交:
下面通过sklearn库中的一些函数来简单演示下上面提到的混淆矩阵,ROC,以及AUC
## 混淆矩阵
import numpy as np
from sklearn.metrics import confusion_matrix
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('混淆矩阵:\n',confusion_matrix(y_true, y_pred))
# 输出
混淆矩阵:
[[1 1]
[1 1]]
其中[0, 0]表示的是TN,[0, 1]表示的是FP,[1, 0]表示的是FN,[1, 1]表示的是FP。
## ROC曲线
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
FPR,TPR,thresholds=roc_curve(y_true, y_pred)
plt.title('ROC')
plt.plot(FPR, TPR,'b')
plt.plot([0,1],[0,1],'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')
## AUC
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print('AUC socre:',roc_auc_score(y_true, y_scores))
# AUC socre: 0.75
AUC的取值就是上面ROC蓝色曲线和下坐标轴构成的面积。
数据分析
首先导入数据分析及可视化会用到的库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import warnings
warnings.filterwarnings('ignore')
读取train.csv和testA.csv的数据,并查看数据的大小、特征、缺失值之类的。
print(train.info(), testA.info())
训练集train的大小为80万,testA的大小为20万行。
train.describe()
特征比较多,只能展示部分了。
missing = train.isnull().sum()
missing = missing[missing > 0]
# 并画出缺失率的图
missing_rate = missing/len(train)
missing_rate.plot.bar()
可以看出,train的缺失值还是不少的,但是占比不是很多。不过缺失值对于xgb,lgb等树模型来说可以直接空缺,树模型会自己优化,要是用别的模型还是要处理的。
one_value_fea = [col for col in train.columns if train[col].nunique() <= 1]
# 'policyCode'
one_value_fea_test = [col for col in testA.columns if testA[col].nunique() <= 1]
# 'policyCode'
然后我们发现policyCode这个记录不管是在训练集中还是测试集中 ,都只有一个值,那么这个就直接可以删去了,对模型丝毫没有影响。
查看特征的数值类型和对象类型:
- 特征一般都是由类别型特征和数值型特征组成
- 类别型特征有时具有非数值关系,有时也具有数值关系。比如‘grade’中的等级A,B,C等,是否只是单纯的分类,还是A优于其他要结合业务判断。
- 数值型特征本是可以直接入模的,但往往风控人员要对其做分箱,转化为WOE编码进而做标准评分卡等操作。从模型效果上来看,特征分箱主要是为了降低变量的复杂性,减少变量噪音对模型的影响,提高自变量和因变量的相关度。从而使模型更加稳定。
数值类型一般是能直接带进模型里面的,而对象模型也就是object是需要先处理一下的。
numerical_fea = list(train.select_dtypes(exclude=['object']).columns)
category_fea = list(train.select_dtypes(include=['object']).columns)
#每个数字特征得分布可视化
f = pd.melt(train, value_vars=numerical_fea)
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")
特征工程
首先导入在这个过程中会用到的一些库,将数据读取进来。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from tqdm import tqdm
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.preprocessing import MinMaxScaler
import xgboost as xgb
import lightgbm as lgb
from catboost import CatBoostRegressor
import warnings
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, log_loss
warnings.filterwarnings('ignore')
train =pd.read_csv('data/train.csv')
testA = pd.read_csv('data/testA.csv')
方便后序对特征的操作,在这里就把训练集的数据和测试集的数据拼接起来(后面再拆分开)。
data = pd.concat([train, testA], axis=0, ignore_index=True)
data['employmentLength'].value_counts(dropna=False).sort_index()
1 year 65671
10+ years 328525
2 years 90565
3 years 80163
4 years 59818
5 years 62645
6 years 46582
7 years 44230
8 years 45168
9 years 37866
< 1 year 80226
NaN 58541
Name: employmentLength, dtype: int64
从上面看出employmentLength是object类型,因此我们可以将字符串转成数字类型。
data['employmentLength'].replace(to_replace='10+ years', value='10 years', inplace=True)
data['employmentLength'].replace('< 1 year', '0 years', inplace=True)
def employmentLength_to_int(s):
if pd.isnull(s):
return s
else:
return np.int8(s.split()[0])
data['employmentLength'] = data['employmentLength'].apply(employmentLength_to_int)
10.0 328525
2.0 90565
0.0 80226
3.0 80163
1.0 65671
5.0 62645
4.0 59818
6.0 46582
8.0 45168
7.0 44230
9.0 37866
Name: employmentLength, dtype: int64
现在再来看看earliesCreditLine这列的数据长什么样子。
data['earliesCreditLine']
0 Aug-2001
1 May-2002
2 May-2006
3 May-1999
4 Aug-1977
...
999995 Nov-2005
999996 Oct-2006
999997 Dec-2001
999998 Aug-2005
999999 Aug-2002
Name: earliesCreditLine, Length: 1000000, dtype: object
我们也可以将其中的月份去掉只取其中的年,操作如下
data['earliesCreditLine'] = data['earliesCreditLine'].apply(lambda s: int(s[-4:]))
结果就变成了数值类型的数据了。
0 2001
1 2002
2 2006
3 1999
4 1977
...
999995 2005
999996 2006
999997 2001
999998 2005
999999 2002
Name: earliesCreditLine, Length: 1000000, dtype: int64
对一些类别特征做如下操作
# 类型数在2之上,又不是高维稀疏的
data = pd.get_dummies(data, columns=['grade', 'subGrade', 'homeOwnership', 'verificationStatus', 'purpose', 'regionCode'], drop_first=True)
# 高维类别特征需要进行转换
for f in ['employmentTitle', 'postCode', 'title']:
data[f+'_cnts'] = data.groupby([f])['id'].transform('count')
data[f+'_rank'] = data.groupby([f])['id'].rank(ascending=False).astype(int)
del data[f]
我们发现在训练集中没有n2.2,n2.3这列,而在测试集中有,因此我们可以选择删掉这两列(也可以不删,如果用的是树模型,树模型会自己优化缺失值)。
del data['n2.2']
del data['n2.3']
del data['id']
# id这列也没什么用,就一起删去了。
现在将训练集和测试集拆分开来。
features = [f for f in data.columns if f not in ['id','issueDate','isDefault']]
train = data[data.isDefault.notnull()].reset_index(drop=True)
test = data[data.isDefault.isnull()].reset_index(drop=True)
x_train = train[features]
x_test = test[features]
y_train = train['isDefault']
建模和融合
def cv_model(clf, train_x, train_y, test_x, clf_name):
folds = 10
seed = 2020
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
train = np.zeros(train_x.shape[0])
test = np.zeros(test_x.shape[0])
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
print('************************************ {} ************************************'.format(str(i+1)))
trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
if clf_name == "lgb":
train_matrix = clf.Dataset(trn_x, label=trn_y)
valid_matrix = clf.Dataset(val_x, label=val_y)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'min_child_weight': 5,
'num_leaves': 2 ** 5,
'lambda_l2': 10,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'bagging_freq': 4,
'learning_rate': 0.1,
'seed': 2020,
'nthread': 28,
'n_jobs':24,
'silent': True,
'verbose': -1,
}
model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], verbose_eval=200,early_stopping_rounds=200)
val_pred = model.predict(val_x, num_iteration=model.best_iteration)
test_pred = model.predict(test_x, num_iteration=model.best_iteration)
# print(list(sorted(zip(features, model.feature_importance("gain")), key=lambda x: x[1], reverse=True))[:20])
if clf_name == "xgb":
train_matrix = clf.DMatrix(trn_x , label=trn_y)
valid_matrix = clf.DMatrix(val_x , label=val_y)
test_matrix = clf.DMatrix(test_x)
params = {'booster': 'gbtree',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'gamma': 1,
'min_child_weight': 1.5,
'max_depth': 5,
'lambda': 10,
'subsample': 0.7,
'colsample_bytree': 0.7,
'colsample_bylevel': 0.7,
'eta': 0.04,
'tree_method': 'exact',
'seed': 2020,
'nthread': 36,
"silent": True,
}
watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
model = clf.train(params, train_matrix, num_boost_round=50000, evals=watchlist, verbose_eval=200, early_stopping_rounds=200)
val_pred = model.predict(valid_matrix, ntree_limit=model.best_ntree_limit)
test_pred = model.predict(test_matrix , ntree_limit=model.best_ntree_limit)
if clf_name == "cat":
params = {'learning_rate': 0.05, 'depth': 5, 'l2_leaf_reg': 10, 'bootstrap_type': 'Bernoulli',
'od_type': 'Iter', 'od_wait': 50, 'random_seed': 11, 'allow_writing_files': False}
model = clf(iterations=20000, **params)
model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
cat_features=[], use_best_model=True, verbose=500)
val_pred = model.predict(val_x)
test_pred = model.predict(test_x)
train[valid_index] = val_pred
test = test_pred / kf.n_splits
cv_scores.append(roc_auc_score(val_y, val_pred))
print(cv_scores)
print("%s_scotrainre_list:" % clf_name, cv_scores)
print("%s_score_mean:" % clf_name, np.mean(cv_scores))
print("%s_score_std:" % clf_name, np.std(cv_scores))
return train, test
def lgb_model(x_train, y_train, x_test):
lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb")
return lgb_train, lgb_test
def xgb_model(x_train, y_train, x_test):
xgb_train, xgb_test = cv_model(xgb, x_train, y_train, x_test, "xgb")
return xgb_train, xgb_test
def cat_model(x_train, y_train, x_test):
cat_train, cat_test = cv_model(CatBoostRegressor, x_train, y_train, x_test, "cat")
return cat_train, cat_test
rh_test = 0.5*lgb_test+0.5*cat_test
testA['isDefault'] = rh_test
testA[['id','isDefault']].to_csv('test_sub.csv', index=False)
因为xgboost模型的速度会比其它两个慢很多,我就没用这个去训练了。
baseline.py
# 导入需要的库
import pandas as pd
import os
import gc
import lightgbm as lgb
import xgboost as xgb
from catboost import CatBoostRegressor
from sklearn.linear_model import SGDRegressor, LinearRegression, Ridge
from sklearn.preprocessing import MinMaxScaler
import math
import numpy as np
from tqdm import tqdm
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, log_loss
import matplotlib.pyplot as plt
import time
import warnings
warnings.filterwarnings('ignore')
# 导入数据
train = pd.read_csv('data/train.csv')
testA = pd.read_csv('data/testA.csv')
data = pd.concat([train, testA], axis=0, ignore_index=True)
data['employmentLength'].replace(to_replace='10+ years', value='10 years', inplace=True)
data['employmentLength'].replace('< 1 year', '0 years', inplace=True)
def employmentLength_to_int(s):
if pd.isnull(s):
return s
else:
return np.int8(s.split()[0])
data['employmentLength'] = data['employmentLength'].apply(employmentLength_to_int)
data['earliesCreditLine'] = data['earliesCreditLine'].apply(lambda s: int(s[-4:]))
data = pd.get_dummies(data, columns=['grade', 'subGrade', 'homeOwnership', 'verificationStatus', 'purpose', 'regionCode'], drop_first=True)
for f in ['employmentTitle', 'postCode', 'title']:
data[f+'_cnts'] = data.groupby([f])['id'].transform('count')
data[f+'_rank'] = data.groupby([f])['id'].rank(ascending=False).astype(int)
del data[f]
del data['n2.2']
del data['n2.3']
del data['id']
features = [f for f in data.columns if f not in ['id','issueDate','isDefault']]
train = data[data.isDefault.notnull()].reset_index(drop=True)
test = data[data.isDefault.isnull()].reset_index(drop=True)
x_train = train[features]
x_test = test[features]
y_train = train['isDefault']
def cv_model(clf, train_x, train_y, test_x, clf_name):
folds = 10
seed = 2020
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
train = np.zeros(train_x.shape[0])
test = np.zeros(test_x.shape[0])
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)):
print('************************************ {} ************************************'.format(str(i+1)))
trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index]
if clf_name == "lgb":
train_matrix = clf.Dataset(trn_x, label=trn_y)
valid_matrix = clf.Dataset(val_x, label=val_y)
params = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'min_child_weight': 5,
'num_leaves': 2 ** 5,
'lambda_l2': 10,
'feature_fraction': 0.8,
'bagging_fraction': 0.8,
'bagging_freq': 4,
'learning_rate': 0.1,
'seed': 2020,
'nthread': 28,
'n_jobs':24,
'silent': True,
'verbose': -1,
}
model = clf.train(params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], verbose_eval=200,early_stopping_rounds=200)
val_pred = model.predict(val_x, num_iteration=model.best_iteration)
test_pred = model.predict(test_x, num_iteration=model.best_iteration)
# print(list(sorted(zip(features, model.feature_importance("gain")), key=lambda x: x[1], reverse=True))[:20])
if clf_name == "xgb":
train_matrix = clf.DMatrix(trn_x , label=trn_y)
valid_matrix = clf.DMatrix(val_x , label=val_y)
test_matrix = clf.DMatrix(test_x)
params = {'booster': 'gbtree',
'objective': 'binary:logistic',
'eval_metric': 'auc',
'gamma': 1,
'min_child_weight': 1.5,
'max_depth': 5,
'lambda': 10,
'subsample': 0.7,
'colsample_bytree': 0.7,
'colsample_bylevel': 0.7,
'eta': 0.04,
'tree_method': 'exact',
'seed': 2020,
'nthread': 36,
"silent": True,
}
watchlist = [(train_matrix, 'train'),(valid_matrix, 'eval')]
model = clf.train(params, train_matrix, num_boost_round=50000, evals=watchlist, verbose_eval=200, early_stopping_rounds=200)
val_pred = model.predict(valid_matrix, ntree_limit=model.best_ntree_limit)
test_pred = model.predict(test_matrix , ntree_limit=model.best_ntree_limit)
if clf_name == "cat":
params = {'learning_rate': 0.05, 'depth': 5, 'l2_leaf_reg': 10, 'bootstrap_type': 'Bernoulli',
'od_type': 'Iter', 'od_wait': 50, 'random_seed': 11, 'allow_writing_files': False}
model = clf(iterations=20000, **params)
model.fit(trn_x, trn_y, eval_set=(val_x, val_y),
cat_features=[], use_best_model=True, verbose=500)
val_pred = model.predict(val_x)
test_pred = model.predict(test_x)
train[valid_index] = val_pred
test = test_pred / kf.n_splits
cv_scores.append(roc_auc_score(val_y, val_pred))
print(cv_scores)
print("%s_scotrainre_list:" % clf_name, cv_scores)
print("%s_score_mean:" % clf_name, np.mean(cv_scores))
print("%s_score_std:" % clf_name, np.std(cv_scores))
return train, test
def lgb_model(x_train, y_train, x_test):
lgb_train, lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb")
return lgb_train, lgb_test
def xgb_model(x_train, y_train, x_test):
xgb_train, xgb_test = cv_model(xgb, x_train, y_train, x_test, "xgb")
return xgb_train, xgb_test
def cat_model(x_train, y_train, x_test):
cat_train, cat_test = cv_model(CatBoostRegressor, x_train, y_train, x_test, "cat")
return cat_train, cat_test
lgb_train, lgb_test = lgb_model(x_train, y_train, x_test)
cat_train, cat_test = cat_model(x_train, y_train, x_test)
rh_test = 0.5*lgb_test+0.5*cat_test
testA['isDefault'] = rh_test
testA[['id','isDefault']].to_csv('test_sub.csv', index=False)