题目列表
解题过程
1、28.实现strStr()
给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字符串的第一个匹配项的下标(下标从 0 开始)。如果 needle 不是 haystack 的一部分,则返回 -1 。
思路: 本题是KMP经典题目。
KMP的经典思想就是:当出现字符串不匹配时,可以记录一部分之前已经匹配的文本内容,利用这些信息避免从头再去做匹配。
如何记录已经匹配的文本内容,是KMP的重点,也是next数组肩负的重任。next数组本质上就是一个前缀表(prefix table)。
前缀表是用来回退的,它记录了模式串与主串(文本串)不匹配的时候,模式串应该从哪里开始重新匹配。
-
前缀是指不包含最后一个字符的所有以第一个字符开头的连续子串。
-
后缀是指不包含第一个字符的所有以最后一个字符结尾的连续子串。
而前缀表要求的就是相同前后缀的长度。
模式串与前缀表对应位置的数字表示的就是:下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀。
next数组既可以就是前缀表,也可以是前缀表统一减一(右移一位,初始位置为-1),这涉及到next数组的具体实现。
KMP算法的时间复杂度: n为文本串长度,m为模式串长度,因为在匹配的过程中,根据前缀表不断调整匹配的位置,可以看出匹配的过程是O(n),之前还要单独生成next数组,时间复杂度是O(m)。所以整个KMP算法的时间复杂度是O(n+m)的。
暴力的解法显而易见是O(n × m),所以KMP在字符串匹配中极大地提高了搜索的效率。
构造next数组: 计算模式串s,前缀表的过程。
- 初始化;
- 处理前后缀不相同的情况;
- 处理前后缀相同的情况。
Java实现1
class Solution {
/**
* 基于窗口滑动的算法
* <p>
* 时间复杂度:O(m*n)
* 空间复杂度:O(1)
* 注:n为haystack的长度,m为needle的长度
*/
public int strStr(String haystack, String needle) {
int m = needle.length();
// 当 needle 是空字符串时我们应当返回 0
if (m == 0) {
return 0;
}
int n = haystack.length();
if (n < m) {
return -1;
}
int i = 0;
int j = 0;
while (i < n - m + 1) {
// 找到首字母相等
while (i < n && haystack.charAt(i) != needle.charAt(j)) {
i++;
}
if (i == n) {// 没有首字母相等的
return -1;
}
// 遍历后续字符,判断是否相等
i++;
j++;
while (i < n && j < m && haystack.charAt(i) == needle.charAt(j)) {
i++;
j++;
}
if (j == m) {// 找到
return i - j;
} else {// 未找到
i -= j - 1;
j = 0;
}
}
return -1;
}
}
Java实现2
// 方法一
class Solution {
public void getNext(int[] next, String s){
int j = -1;
next[0] = j;
for (int i = 1; i < s.length(); i++){
while(j >= 0 && s.charAt(i) != s.charAt(j+1)){
j=next[j];
}
if(s.charAt(i) == s.charAt(j+1)){
j++;
}
next[i] = j;
}
}
public int strStr(String haystack, String needle) {
if(needle.length()==0){
return 0;
}
int[] next = new int[needle.length()];
getNext(next, needle);
int j = -1;
for(int i = 0; i < haystack.length(); i++){
while(j>=0 && haystack.charAt(i) != needle.charAt(j+1)){
j = next[j];
}
if(haystack.charAt(i) == needle.charAt(j+1)){
j++;
}
if(j == needle.length()-1){
return (i-needle.length()+1);
}
}
return -1;
}
}
Java实现3
class Solution {
//前缀表(不减一)Java实现
public int strStr(String haystack, String needle) {
if (needle.length() == 0) return 0;
int[] next = new int[needle.length()];
getNext(next, needle);
int j = 0;
for (int i = 0; i < haystack.length(); i++) {
while (j > 0 && needle.charAt(j) != haystack.charAt(i))
j = next[j - 1];
if (needle.charAt(j) == haystack.charAt(i))
j++;
if (j == needle.length())
return i - needle.length() + 1;
}
return -1;
}
private void getNext(int[] next, String s) {
int j = 0;
next[0] = 0;
for (int i = 1; i < s.length(); i++) {
while (j > 0 && s.charAt(j) != s.charAt(i))
j = next[j - 1];
if (s.charAt(j) == s.charAt(i))
j++;
next[i] = j;
}
}
}
2、459.重复的子字符串
给定一个非空的字符串 s ,检查是否可以通过由它的一个子串重复多次构成。
假设字符串s使用多个重复子串构成(这个子串是最小重复单位),重复出现的子字符串长度是x,所以s是由n * x组成。
因为字符串s的最长相同前后缀的长度一定是不包含s本身,所以 最长相同前后缀长度必然是m * x,而且 n - m = 1。
所以如果 nx % (n - m)x = 0,就可以判定有重复出现的子字符串。
next数组记录的就是最长相同前后缀,如果 next[len - 1] != -1,则说明字符串有最长相同的前后缀(就是字符串里的前缀子串和后缀子串相同的最长长度)。
最长相等前后缀的长度为:next[len - 1] + 1。(这里的next数组是以统一减一的方式计算的,因此需要+1。
数组长度为:len。
如果len % (len - (next[len - 1] + 1)) == 0 ,则说明数组的长度正好可以被 (数组长度-最长相等前后缀的长度) 整除,说明该字符串有重复的子字符串。
数组长度减去最长相同前后缀的长度相当于是第一个周期的长度,也就是一个周期的长度,如果这个周期可以被整除,就说明整个数组就是这个周期的循环。
class Solution {
public boolean repeatedSubstringPattern(String s) {
if (s.equals("")) return false;
int len = s.length();
// 原串加个空格(哨兵),使下标从1开始,这样j从0开始,也不用初始化了
s = " " + s;
char[] chars = s.toCharArray();
int[] next = new int[len + 1];
// 构造 next 数组过程,j从0开始(空格),i从2开始
for (int i = 2, j = 0; i <= len; i++) {
// 匹配不成功,j回到前一位置 next 数组所对应的值
while (j > 0 && chars[i] != chars[j + 1]) j = next[j];
// 匹配成功,j往后移
if (chars[i] == chars[j + 1]) j++;
// 更新 next 数组的值
next[i] = j;
}
// 最后判断是否是重复的子字符串,这里 next[len] 即代表next数组末尾的值
if (next[len] > 0 && len % (len - next[len]) == 0) {
return true;
}
return false;
}
}
字符串总结
什么是字符串
字符串是若干字符组成的有限序列,也可以理解为是一个字符数组。
双指针法
双指针法在数组,链表和字符串中很常用。
反转系列
有些情况下,先整体反转再局部反转,可以实现反转字符串里的单词。
KMP
KMP的主要思想是当出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了。其中主要理解j=next[x]这一步最为关键!
双指针回顾
- 数组篇:通过两个指针在一个for循环下完成两个for循环的工作。
- 字符串篇:替换空格思路就是首先扩充数组到每个空格替换成"%20"之后的大小。然后双指针从后向前替换空格。
- 链表篇:判断链表是否有环使用快慢指针(双指针法),分别定义 fast 和 slow指针,从头结点出发,fast指针每次移动两个节点,slow指针每次移动一个节点,如果 fast 和 slow指针在途中相遇 ,说明这个链表有环。
- N数之和篇:三数之和、四数之和通过前后两个指针不算向中间逼近,在一个for循环下完成两个for循环的工作。
总结
KMP算法是字符串类型题目中的重点和难点。