写在前面
Linux内核中的进程管理涉及的数据结构其实并不多。本文将对Linux进程管理中常用的数据结构进行一个总结与注释。
struct rq
根据代码注释,我们可知该数据结构为一个per-CPU变量,意味着每个CPU核都独立拥有一个属于自己的rq。下文中对ARM64平台中涉及较多的成员变量进行注释。
![图片转存失败,建议将图片保存下来直接上传
// kernel/sched/sched.h
/*
* This is the main, per-CPU runqueue data structure.
*
* Locking rule: those places that want to lock multiple runqueues
* (such as the load balancing or the thread migration code), lock
* acquire operations must be ordered by ascending &runqueue.
*/
struct rq {
/* runqueue lock: */
raw_spinlock_t lock;
image.png(https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/d0adf9f4661a4186865a7dd10a364f0d~tplv-k3u1fbpfcp-watermark.image?)
/*
* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.
*/
// 当前CPU上就绪的任务总数,包括rt的,cfs的和正在运行的。
unsigned int nr_running;
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
unsigned int numa_migrate_on;
#endif
#ifdef CONFIG_NO_HZ_COMMON
#ifdef CONFIG_SMP
unsigned long last_blocked_load_update_tick;
unsigned int has_blocked_load;
call_single_data_t nohz_csd;
#endif /* CONFIG_SMP */
unsigned int nohz_tick_stopped;
atomic_t nohz_flags;
#endif /* CONFIG_NO_HZ_COMMON */
#ifdef CONFIG_SMP
unsigned int ttwu_pending;
#endif
// 该rq上进程切换的次数。
u64 nr_switches;
#ifdef CONFIG_UCLAMP_TASK
/* Utilization clamp values based on CPU's RUNNABLE tasks */
struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
unsigned int uclamp_flags;
#define UCLAMP_FLAG_IDLE 0x01
#endif
// 该rq上的cfs、rt、dl队列。
struct cfs_rq cfs;
struct rt_rq rt;
struct dl_rq dl;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this CPU: */
struct list_head leaf_cfs_rq_list;
struct list_head *tmp_alone_branch;
#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
* This is part of a global counter where only the total sum
* over all CPUs matters. A task can increase this counter on
* one CPU and if it got migrated afterwards it may decrease
* it on another CPU. Always updated under the runqueue lock:
*/
/* 统计目前rq中有多少task属于TASK_UNINTERRUPTIBLE的状
态。当执行active_task时:
1. nr_uninterruptible减一
2. 通过enqueue_task把对应的task依据所在的
scheduling class放在对应的rq中。
3. 把目前rq中的nr_running值加1.
*/
unsigned long nr_uninterruptible;
/* 指向当前处理器正在执行的task */
struct task_struct __rcu *curr;
/* 指向属于idle-task scheduleing class的idle task */
struct task_struct *idle;
/* 指向stop-task scheduling class的task */
struct task_struct *stop;
/* 基于处理器的jiffies值,用于记录下次进行处理器balancing的时间点 */
unsigned long next_balance;
/*
用于记录context-switch发生时,前一个task的mm结构体,
并可用于在函数finish_task_switch中,透过函数mmdrop释放前
一个task的内存资源
*/
struct mm_struct *prev_mm;
unsigned int clock_update_flags;
u64 clock;
/* Ensure that all clocks are in the same cache line */
u64 clock_task ____cacheline_aligned;
u64 clock_pelt;
unsigned long lost_idle_time;
/*
用于记录目前rq中有多少task处于等待i/o的sleep状态,在实
际的使用上,例如当driver接受来自task的调用,但处于等待
i/o回复的阶段时,为了充分利用处理器的执行资源,这时就
可以在driver中呼叫函数io_schedule,此时就会把目前rq的
nr_iowait加一,并设定目前task的io_wait为1,然后触发
scheduling让其他task有机会可以得到处理器执行时间。
*/
atomic_t nr_iowait;
#ifdef CONFIG_MEMBARRIER
int membarrier_state;
#endif
#ifdef CONFIG_SMP
/* 调度域相关,参考本人另一篇文章。 */
struct root_domain *rd;
struct sched_domain __rcu *sd;
unsigned long cpu_capacity;
unsigned long cpu_capacity_orig;
struct callback_head *balance_callback;
unsigned char nohz_idle_balance;
unsigned char idle_balance;
unsigned long misfit_task_load;
/* For active balancing */
/*
当该值为1时,表示该rq正在执行CFS调度策略的load
balance。
*/
int active_balance;
/*
用于存储目前进入idle且负责进行load balance流程的处理
器id。流程为:
1. 执行函数schedule时;
2. 若该处理器的runqueue的nr_running为0(没有正在执行
的task),就会执行idle_balance,并触发后续load
balance流程。
*/
int push_cpu;
struct cpu_stop_work active_balance_work;
/* CPU of this runqueue: */
/* 该rq所处的CPU。 */
int cpu;
/* 为1则表示该rq在对应的cpu上正在执行 */
int online;
struct list_head cfs_tasks;
struct sched_avg avg_rt;
struct sched_avg avg_dl;
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
struct sched_avg avg_irq;
#endif
#ifdef CONFIG_SCHED_THERMAL_PRESSURE
struct sched_avg avg_thermal;
#endif
u64 idle_stamp;
u64 avg_idle;
/* This is used to determine avg_idle's max value */
u64 max_idle_balance_cost;
#endif /* CONFIG_SMP */
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
u64 prev_irq_time;
#endif
#ifdef CONFIG_PARAVIRT
u64 prev_steal_time;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
u64 prev_steal_time_rq;
#endif
/* calc_load related fields */
unsigned long calc_load_update;
long calc_load_active;
#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
call_single_data_t hrtick_csd;
#endif
/* 为高精度tick的数据结构,通过hrtimer_init初始化 */
struct hrtimer hrtick_timer;
ktime_t hrtick_time;
#endif
#ifdef CONFIG_SCHEDSTATS
/* latency stats */
struct sched_info rq_sched_info;
unsigned long long rq_cpu_time;
/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
/* sys_sched_yield() stats */
/* 记录执行system call sys_sched_yield的次数 */
unsigned int yld_count;
/* schedule() stats */
/*
用于统计触发scheduling的次数,在每次触发scheduling
时,会通过函数schedule执行shcedule_debug,执行
schedstat_inc将该值进行累加。
*/
unsigned int sched_count;
/*
记录进入到idle task的次数,执行pick_next_task_idle
时,执行schedstat_inc对该值进行累加。
*/
unsigned int sched_goidle;
/* try_to_wake_up() stats */
/* 记录wake up task的次数 */
unsigned int ttwu_count;
/* 记录wake up 同一个处理器task的次数 */
unsigned int ttwu_local;
#endif
#ifdef CONFIG_CPU_IDLE
/* Must be inspected within a rcu lock section */
struct cpuidle_state *idle_state;
#endif
};
struct task_struct
task_struct结构体描述了一个任务,值得注意的是其中包含了一个sched_entity(调度实体)类型的成员变量,
// include/linux/sched.h
struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
/*
* For reasons of header soup (see current_thread_info()), this
* must be the first element of task_struct.
*/
struct thread_info thread_info;
#endif
/* -1 unrunnable, 0 runnable, >0 stopped: */
/*
1) 如同注释所述,表示了该task的运行状态。
2) 0 表示 TASK_RUNNING 状态,虽说是 running 状态,并
不代表它一定正在 CPU 上运行,而是两种可能:正在运行或
者处于就绪状态。而准确地判断一个进程是否正在运行是通过
on_cpu 字段。
3) 其他状态可以参考include/linux/sched.h中的定义。
*/
volatile long state;
/*
* This begins the randomizable portion of task_struct. Only
* scheduling-critical items should be added above here.
*/
randomized_struct_fields_start
// 栈指针
void *stack;
refcount_t usage;
/* Per task flags (PF_*), defined further below: */
unsigned int flags;
unsigned int ptrace;
#ifdef CONFIG_SMP
/*
判断进程是不是正在某个 CPU 上运行,注意与state的关系
*/
int on_cpu;
struct __call_single_node wake_entry;
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* Current CPU: */
unsigned int cpu;
#endif
unsigned int wakee_flips;
unsigned long wakee_flip_decay_ts;
struct task_struct *last_wakee;
/*
* recent_used_cpu is initially set as the last CPU used by a task
* that wakes affine another task. Waker/wakee relationships can
* push tasks around a CPU where each wakeup moves to the next one.
* Tracking a recently used CPU allows a quick search for a recently
* used CPU that may be idle.
*/
int recent_used_cpu;
int wake_cpu;
#endif
/* 是否在就绪队列上 */
int on_rq;
/* 该进程的动态优先级,在 cfs 中并不重要。 */
int prio;
/*
进程的静态优先级,该优先级直接决定了非实时进程的
load_weight,从而决定了该进程对应调度实体的 vruntime
增长速度。
*/
int static_prio;
/*
对于实时进程和非实时进程而言,优先级以及对应的表达式不
一样的,
1. 实时进程占用 0~99 号优先级,数字越大优先级越高,
2. 非实时进程则是 100~139,数字越大优先级越低,
3. 为了对优先级进行统一,需要将实时优先级经过一层转
换,而非实时优先级不需要动,normal_prio 代表的就是统一
的优先级表示方法。
*/
int normal_prio;
/* 进程的实时优先级,和实时调度相关 */
unsigned int rt_priority;
/* 进程所属的调度器类,也就是由哪种调度器进行管理。 */
const struct sched_class *sched_class;
/*
进程对应的 sched_entity,每一个进程都对应一个
sched_entity,
反之并不成立,因为某些 sched_entity 可能对应一个进程
组。
*/
/* 实时进程的调度实体,rt_se */
struct sched_entity se;
struct sched_rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
/* 当组调度被使能时,该成员记录了进程所属的调度组。 */
struct task_group *sched_task_group;
#endif
/* deadline 类调度进程的调度实体 se。 */
struct sched_dl_entity dl;
#ifdef CONFIG_UCLAMP_TASK
/*
* Clamp values requested for a scheduling entity.
* Must be updated with task_rq_lock() held.
*/
struct uclamp_se uclamp_req[UCLAMP_CNT];
/*
* Effective clamp values used for a scheduling entity.
* Must be updated with task_rq_lock() held.
*/
struct uclamp_se uclamp[UCLAMP_CNT];
#endif
#ifdef CONFIG_PREEMPT_NOTIFIERS
/* List of struct preempt_notifier: */
struct hlist_head preempt_notifiers;
#endif
#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;
#endif
/* 调度策略:可在以下选项中选择
#define SCHED_NORMAL 0
#define SCHED_FIFO 1
#define SCHED_RR 2
#define SCHED_BATCH 3
/* SCHED_ISO: reserved but not implemented yet */
#define SCHED_IDLE 5
#define SCHED_DEADLINE 6
*/
unsigned int policy;
int nr_cpus_allowed;
const cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
#ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock_nesting;
union rcu_special rcu_read_unlock_special;
struct list_head rcu_node_entry;
struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
unsigned long rcu_tasks_nvcsw;
u8 rcu_tasks_holdout;
u8 rcu_tasks_idx;
int rcu_tasks_idle_cpu;
struct list_head rcu_tasks_holdout_list;
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_TRACE_RCU
int trc_reader_nesting;
int trc_ipi_to_cpu;
union rcu_special trc_reader_special;
bool trc_reader_checked;
struct list_head trc_holdout_list;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
struct sched_info sched_info;
struct list_head tasks;
#ifdef CONFIG_SMP
struct plist_node pushable_tasks;
struct rb_node pushable_dl_tasks;
#endif
struct mm_struct *mm;
struct mm_struct *active_mm;
/* Per-thread vma caching: */
struct vmacache vmacache;
#ifdef SPLIT_RSS_COUNTING
struct task_rss_stat rss_stat;
#endif
int exit_state;
int exit_code;
int exit_signal;
/* The signal sent when the parent dies: */
int pdeath_signal;
/* JOBCTL_*, siglock protected: */
unsigned long jobctl;
/* Used for emulating ABI behavior of previous Linux versions: */
unsigned int personality;
/* Scheduler bits, serialized by scheduler locks: */
unsigned sched_reset_on_fork:1;
unsigned sched_contributes_to_load:1;
unsigned sched_migrated:1;
#ifdef CONFIG_PSI
unsigned sched_psi_wake_requeue:1;
#endif
/* Force alignment to the next boundary: */
unsigned :0;
/* Unserialized, strictly 'current' */
/*
* This field must not be in the scheduler word above due to wakelist
* queueing no longer being serialized by p->on_cpu. However:
*
* p->XXX = X; ttwu()
* schedule() if (p->on_rq && ..) // false
* smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
* deactivate_task() ttwu_queue_wakelist())
* p->on_rq = 0; p->sched_remote_wakeup = Y;
*
* guarantees all stores of 'current' are visible before
* ->sched_remote_wakeup gets used, so it can be in this word.
*/
unsigned sched_remote_wakeup:1;
/* Bit to tell LSMs we're in execve(): */
unsigned in_execve:1;
unsigned in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
unsigned restore_sigmask:1;
#endif
#ifdef CONFIG_MEMCG
unsigned in_user_fault:1;
#endif
#ifdef CONFIG_COMPAT_BRK
unsigned brk_randomized:1;
#endif
#ifdef CONFIG_CGROUPS
/* disallow userland-initiated cgroup migration */
unsigned no_cgroup_migration:1;
/* task is frozen/stopped (used by the cgroup freezer) */
unsigned frozen:1;
#endif
#ifdef CONFIG_BLK_CGROUP
unsigned use_memdelay:1;
#endif
#ifdef CONFIG_PSI
/* Stalled due to lack of memory */
unsigned in_memstall:1;
#endif
unsigned long atomic_flags; /* Flags requiring atomic access. */
struct restart_block restart_block;
pid_t pid;
pid_t tgid;
#ifdef CONFIG_STACKPROTECTOR
/* Canary value for the -fstack-protector GCC feature: */
unsigned long stack_canary;
#endif
/*
* Pointers to the (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->real_parent->pid)
*/
/* Real parent process: */
struct task_struct __rcu *real_parent;
/* Recipient of SIGCHLD, wait4() reports: */
struct task_struct __rcu *parent;
/*
* Children/sibling form the list of natural children:
*/
struct list_head children;
struct list_head sibling;
struct task_struct *group_leader;
/*
* 'ptraced' is the list of tasks this task is using ptrace() on.
*
* This includes both natural children and PTRACE_ATTACH targets.
* 'ptrace_entry' is this task's link on the p->parent->ptraced list.
*/
struct list_head ptraced;
struct list_head ptrace_entry;
/* PID/PID hash table linkage. */
struct pid *thread_pid;
struct hlist_node pid_links[PIDTYPE_MAX];
struct list_head thread_group;
struct list_head thread_node;
struct completion *vfork_done;
/* CLONE_CHILD_SETTID: */
int __user *set_child_tid;
/* CLONE_CHILD_CLEARTID: */
int __user *clear_child_tid;
u64 utime;
u64 stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
u64 utimescaled;
u64 stimescaled;
#endif
u64 gtime;
struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
struct vtime vtime;
#endif
#ifdef CONFIG_NO_HZ_FULL
atomic_t tick_dep_mask;
#endif
/* Context switch counts: */
unsigned long nvcsw;
unsigned long nivcsw;
/* Monotonic time in nsecs: */
u64 start_time;
/* Boot based time in nsecs: */
u64 start_boottime;
/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
unsigned long min_flt;
unsigned long maj_flt;
/* Empty if CONFIG_POSIX_CPUTIMERS=n */
struct posix_cputimers posix_cputimers;
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
struct posix_cputimers_work posix_cputimers_work;
#endif
/* Process credentials: */
/* Tracer's credentials at attach: */
const struct cred __rcu *ptracer_cred;
/* Objective and real subjective task credentials (COW): */
const struct cred __rcu *real_cred;
/* Effective (overridable) subjective task credentials (COW): */
const struct cred __rcu *cred;
#ifdef CONFIG_KEYS
/* Cached requested key. */
struct key *cached_requested_key;
#endif
/*
* executable name, excluding path.
*
* - normally initialized setup_new_exec()
* - access it with [gs]et_task_comm()
* - lock it with task_lock()
*/
char comm[TASK_COMM_LEN];
struct nameidata *nameidata;
#ifdef CONFIG_SYSVIPC
struct sysv_sem sysvsem;
struct sysv_shm sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
unsigned long last_switch_count;
unsigned long last_switch_time;
#endif
/* Filesystem information: */
struct fs_struct *fs;
/* Open file information: */
struct files_struct *files;
#ifdef CONFIG_IO_URING
struct io_uring_task *io_uring;
#endif
/* Namespaces: */
struct nsproxy *nsproxy;
/* Signal handlers: */
struct signal_struct *signal;
struct sighand_struct __rcu *sighand;
sigset_t blocked;
sigset_t real_blocked;
/* Restored if set_restore_sigmask() was used: */
sigset_t saved_sigmask;
struct sigpending pending;
unsigned long sas_ss_sp;
size_t sas_ss_size;
unsigned int sas_ss_flags;
struct callback_head *task_works;
#ifdef CONFIG_AUDIT
#ifdef CONFIG_AUDITSYSCALL
struct audit_context *audit_context;
#endif
kuid_t loginuid;
unsigned int sessionid;
#endif
struct seccomp seccomp;
/* Thread group tracking: */
u64 parent_exec_id;
u64 self_exec_id;
/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
spinlock_t alloc_lock;
/* Protection of the PI data structures: */
raw_spinlock_t pi_lock;
struct wake_q_node wake_q;
#ifdef CONFIG_RT_MUTEXES
/* PI waiters blocked on a rt_mutex held by this task: */
struct rb_root_cached pi_waiters;
/* Updated under owner's pi_lock and rq lock */
struct task_struct *pi_top_task;
/* Deadlock detection and priority inheritance handling: */
struct rt_mutex_waiter *pi_blocked_on;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
/* Mutex deadlock detection: */
struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
int non_block_count;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
struct irqtrace_events irqtrace;
unsigned int hardirq_threaded;
u64 hardirq_chain_key;
int softirqs_enabled;
int softirq_context;
int irq_config;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
u64 curr_chain_key;
int lockdep_depth;
unsigned int lockdep_recursion;
struct held_lock held_locks[MAX_LOCK_DEPTH];
#endif
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
unsigned int in_ubsan;
#endif
/* Journalling filesystem info: */
void *journal_info;
/* Stacked block device info: */
struct bio_list *bio_list;
#ifdef CONFIG_BLOCK
/* Stack plugging: */
struct blk_plug *plug;
#endif
/* VM state: */
struct reclaim_state *reclaim_state;
struct backing_dev_info *backing_dev_info;
struct io_context *io_context;
#ifdef CONFIG_COMPACTION
struct capture_control *capture_control;
#endif
/* Ptrace state: */
unsigned long ptrace_message;
kernel_siginfo_t *last_siginfo;
struct task_io_accounting ioac;
#ifdef CONFIG_PSI
/* Pressure stall state */
unsigned int psi_flags;
#endif
#ifdef CONFIG_TASK_XACCT
/* Accumulated RSS usage: */
u64 acct_rss_mem1;
/* Accumulated virtual memory usage: */
u64 acct_vm_mem1;
/* stime + utime since last update: */
u64 acct_timexpd;
#endif
#ifdef CONFIG_CPUSETS
/* Protected by ->alloc_lock: */
nodemask_t mems_allowed;
/* Seqence number to catch updates: */
seqcount_spinlock_t mems_allowed_seq;
int cpuset_mem_spread_rotor;
int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
/* Control Group info protected by css_set_lock: */
struct css_set __rcu *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock: */
struct list_head cg_list;
#endif
#ifdef CONFIG_X86_CPU_RESCTRL
u32 closid;
u32 rmid;
#endif
#ifdef CONFIG_FUTEX
struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
struct compat_robust_list_head __user *compat_robust_list;
#endif
struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;
struct mutex futex_exit_mutex;
unsigned int futex_state;
#endif
#ifdef CONFIG_PERF_EVENTS
struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
struct mutex perf_event_mutex;
struct list_head perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
unsigned long preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
/* Protected by alloc_lock: */
struct mempolicy *mempolicy;
short il_prev;
short pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
int numa_scan_seq;
unsigned int numa_scan_period;
unsigned int numa_scan_period_max;
int numa_preferred_nid;
unsigned long numa_migrate_retry;
/* Migration stamp: */
u64 node_stamp;
u64 last_task_numa_placement;
u64 last_sum_exec_runtime;
struct callback_head numa_work;
/*
* This pointer is only modified for current in syscall and
* pagefault context (and for tasks being destroyed), so it can be read
* from any of the following contexts:
* - RCU read-side critical section
* - current->numa_group from everywhere
* - task's runqueue locked, task not running
*/
struct numa_group __rcu *numa_group;
/*
* numa_faults is an array split into four regions:
* faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
* in this precise order.
*
* faults_memory: Exponential decaying average of faults on a per-node
* basis. Scheduling placement decisions are made based on these
* counts. The values remain static for the duration of a PTE scan.
* faults_cpu: Track the nodes the process was running on when a NUMA
* hinting fault was incurred.
* faults_memory_buffer and faults_cpu_buffer: Record faults per node
* during the current scan window. When the scan completes, the counts
* in faults_memory and faults_cpu decay and these values are copied.
*/
unsigned long *numa_faults;
unsigned long total_numa_faults;
/*
* numa_faults_locality tracks if faults recorded during the last
* scan window were remote/local or failed to migrate. The task scan
* period is adapted based on the locality of the faults with different
* weights depending on whether they were shared or private faults
*/
unsigned long numa_faults_locality[3];
unsigned long numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */
#ifdef CONFIG_RSEQ
struct rseq __user *rseq;
u32 rseq_sig;
/*
* RmW on rseq_event_mask must be performed atomically
* with respect to preemption.
*/
unsigned long rseq_event_mask;
#endif
struct tlbflush_unmap_batch tlb_ubc;
union {
refcount_t rcu_users;
struct rcu_head rcu;
};
/* Cache last used pipe for splice(): */
struct pipe_inode_info *splice_pipe;
struct page_frag task_frag;
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
int make_it_fail;
unsigned int fail_nth;
#endif
/*
* When (nr_dirtied >= nr_dirtied_pause), it's time to call
* balance_dirty_pages() for a dirty throttling pause:
*/
int nr_dirtied;
int nr_dirtied_pause;
/* Start of a write-and-pause period: */
unsigned long dirty_paused_when;
#ifdef CONFIG_LATENCYTOP
int latency_record_count;
struct latency_record latency_record[LT_SAVECOUNT];
#endif
/*
* Time slack values; these are used to round up poll() and
* select() etc timeout values. These are in nanoseconds.
*/
u64 timer_slack_ns;
u64 default_timer_slack_ns;
#ifdef CONFIG_KASAN
unsigned int kasan_depth;
#endif
#ifdef CONFIG_KCSAN
struct kcsan_ctx kcsan_ctx;
#ifdef CONFIG_TRACE_IRQFLAGS
struct irqtrace_events kcsan_save_irqtrace;
#endif
#endif
#if IS_ENABLED(CONFIG_KUNIT)
struct kunit *kunit_test;
#endif
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* Index of current stored address in ret_stack: */
int curr_ret_stack;
int curr_ret_depth;
/* Stack of return addresses for return function tracing: */
struct ftrace_ret_stack *ret_stack;
/* Timestamp for last schedule: */
unsigned long long ftrace_timestamp;
/*
* Number of functions that haven't been traced
* because of depth overrun:
*/
atomic_t trace_overrun;
/* Pause tracing: */
atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
/* State flags for use by tracers: */
unsigned long trace;
/* Bitmask and counter of trace recursion: */
unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_KCOV
/* See kernel/kcov.c for more details. */
/* Coverage collection mode enabled for this task (0 if disabled): */
unsigned int kcov_mode;
/* Size of the kcov_area: */
unsigned int kcov_size;
/* Buffer for coverage collection: */
void *kcov_area;
/* KCOV descriptor wired with this task or NULL: */
struct kcov *kcov;
/* KCOV common handle for remote coverage collection: */
u64 kcov_handle;
/* KCOV sequence number: */
int kcov_sequence;
/* Collect coverage from softirq context: */
unsigned int kcov_softirq;
#endif
#ifdef CONFIG_MEMCG
struct mem_cgroup *memcg_in_oom;
gfp_t memcg_oom_gfp_mask;
int memcg_oom_order;
/* Number of pages to reclaim on returning to userland: */
unsigned int memcg_nr_pages_over_high;
/* Used by memcontrol for targeted memcg charge: */
struct mem_cgroup *active_memcg;
#endif
#ifdef CONFIG_BLK_CGROUP
struct request_queue *throttle_queue;
#endif
#ifdef CONFIG_UPROBES
struct uprobe_task *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
unsigned int sequential_io;
unsigned int sequential_io_avg;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
unsigned long task_state_change;
#endif
int pagefault_disabled;
#ifdef CONFIG_MMU
struct task_struct *oom_reaper_list;
struct timer_list oom_reaper_timer;
#endif
#ifdef CONFIG_VMAP_STACK
struct vm_struct *stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* A live task holds one reference: */
refcount_t stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
int patch_state;
#endif
#ifdef CONFIG_SECURITY
/* Used by LSM modules for access restriction: */
void *security;
#endif
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
unsigned long lowest_stack;
unsigned long prev_lowest_stack;
#endif
#ifdef CONFIG_X86_MCE
void __user *mce_vaddr;
__u64 mce_kflags;
u64 mce_addr;
__u64 mce_ripv : 1,
mce_whole_page : 1,
__mce_reserved : 62;
struct callback_head mce_kill_me;
int mce_count;
#endif
/*
* New fields for task_struct should be added above here, so that
* they are included in the randomized portion of task_struct.
*/
randomized_struct_fields_end
/* CPU-specific state of this task: */
struct thread_struct thread;
/*
* WARNING: on x86, 'thread_struct' contains a variable-sized
* structure. It *MUST* be at the end of 'task_struct'.
*
* Do not put anything below here!
*/
};
struct sched_entity
sched_entity是对一个调度单元的抽象,实际在CPU上执行的还是进程(或者线程),因此对于真正执行的task,还需要关注task_struct中调度相关的数据成员。
- cfs_rq和sched_entity是cfs调度器特定的成员。
- task是应用于所有调度器的,因此某些调度相关的成员是和其他调度器相关的。
struct sched_entity {
/* For load-balancing: */
/*
load表示当前调度实体的权重,这个权重决定了一个调度
实体的运行优先级。
*/
struct load_weight load;
struct rb_node run_node;
struct list_head group_node;
/* 代表当前调度实体是否在就绪队列上 */
unsigned int on_rq;
/* 当前实体上次被调度执行的时间 */
u64 exec_start;
/* 当前实体总执行时间 */
u64 sum_exec_runtime;
/*
当前实体的虚拟时间,调度器就是通过调度实体的虚拟时
间进行调度,在选择下一个待执行实体时总是选择虚拟时
间最小的。
*/
u64 vruntime;
u64 prev_sum_exec_runtime;
/*
实体执行迁移的次数,在多核系统中,CPU 之间会经常性
地执行负载均衡操作,因此调度实体很可能因为负载均衡
而迁移到其它 CPU 的就绪队列上。
*/
u64 nr_migrations;
/*
进程的属性统计,需要内核配置 CONFIG_SCHEDSTATS,
其统计信息包含睡眠统计、等待延迟统计、CPU迁移统
计、唤醒统计等。
*/
struct sched_statistics statistics;
#ifdef CONFIG_FAIR_GROUP_SCHED
int depth;
/* 指向父级调度实体 */
struct sched_entity *parent;
/* rq on which this entity is (to be) queued: */
/* 当前调度实体属于的 cfs_rq. */
struct cfs_rq *cfs_rq;
/* rq "owned" by this entity/group: */
/*
如果当前调度实体是一个调度组,那么它将拥有自己的
cfs_rq。
*/
struct cfs_rq *my_q;
/* cached value of my_q->h_nr_running */
unsigned long runnable_weight;
#endif
#ifdef CONFIG_SMP
/*
* Per entity load average tracking.
*
* Put into separate cache line so it does not
* collide with read-mostly values above.
*/
/*
在多核系统中,需要记录 CPU 的负载,其统计方式精确
到每一个调度实体,而这里的 avg 成员就是用来记录当
前实体对于 CPU 的负载贡献。
*/
struct sched_avg avg;
#endif
};
struct sched_class
// kernel/sched/sched.h
struct sched_class {
#ifdef CONFIG_UCLAMP_TASK
int uclamp_enabled;
#endif
/*
当task处于Runnable状态是,就会执行这个函数,将task配
置到runqueue的RBTree中。并执行inc_nr_running将
runqueue中的nr_running的值加1。
*/
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
/*
当task不需要执行时,就会执行这个函数,把task从
runqueue的RBTree中移除,并执行dec_nr_running将
runqueue中的nr_running值减一。
*/
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
/*
用于暂停目前正在执行的task,如果
sysctl_sched_compat_yield有设定,就会找出目前RBTree
中最右边的task(vruntime最大的task),让目前task的
vruntime值等于最右边的task值的vruntime+1。下次调度时
就把目前的task放到RBTree的最右边,相当于暂停该task,
让该task下次被执行道德机会最低。
*/
void (*yield_task) (struct rq *rq);
bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
/*
用于决定一个task是否可以中断目前正在执行的task,取得
执行权。
*/
void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
/*
用于在进程调度触发时,从runqueue的RBTree中,
选择一个符合目前scheduling逻辑的下一个要被执行的
Task。
*/
struct task_struct *(*pick_next_task)(struct rq *rq);
/*
用于在进程调度触发时,把上一个执行完毕的task放到目前
runqueue RBTree中对应的位置。
*/
void (*put_prev_task)(struct rq *rq, struct task_struct *p);
void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
#ifdef CONFIG_SMP
int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
/*
通常用于在执行一个新的程序,或者wakeup一个task时,会
根据目前SMP下每个处理器的负载,决定task是否要切换到另
一个处理器的runqueue去执行,执行时会返回最后目标处理
器的值。
*/
int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
void (*task_woken)(struct rq *this_rq, struct task_struct *task);
void (*set_cpus_allowed)(struct task_struct *p,
const struct cpumask *newmask);
void (*rq_online)(struct rq *rq);
void (*rq_offline)(struct rq *rq);
#endif
/*
系统中调用的schedule_tick会调用这个函数,用于进程
调度机制决定哪些task要被执行,那些task要被移出
runqueue。
*/
void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
void (*task_fork)(struct task_struct *p);
void (*task_dead)(struct task_struct *p);
/*
* The switched_from() call is allowed to drop rq->lock, therefore we
* cannot assume the switched_from/switched_to pair is serliazed by
* rq->lock. They are however serialized by p->pi_lock.
*/
void (*switched_from)(struct rq *this_rq, struct task_struct *task);
void (*switched_to) (struct rq *this_rq, struct task_struct *task);
void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
int oldprio);
unsigned int (*get_rr_interval)(struct rq *rq,
struct task_struct *task);
void (*update_curr)(struct rq *rq);
#define TASK_SET_GROUP 0
#define TASK_MOVE_GROUP 1
#ifdef CONFIG_FAIR_GROUP_SCHED
void (*task_change_group)(struct task_struct *p, int type);
#endif
} __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
struct cfs_rq
/* CFS-related fields in a runqueue */
struct cfs_rq {
/*
在上面的 sched_entity 结构中也存在同样的 load 成
员,一个 sched_entity(se) 的 load 成员表示单个 se
的 load,而 cfs_rq 上的 load 表示当前 cfs_rq 上所
有实体的 load 总和。
*/
struct load_weight load;
/*
这两个都是对当前 cfs_rq 上实体的统计,区别在于:
nr_running 只表示当前 cfs_rq 上存在的子实体,如果
子实体是调度组,也只算一个。而 h_nr_running 的统
计会递归地包含子调度组中的所有实体。因此可以通过比
较这两者是否相等来判断当前 cfs_rq 上是否存在调度
组。
*/
unsigned int nr_running;
unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
unsigned int idle_h_nr_running; /* SCHED_IDLE */
/* 当前 cfs_rq 上执行的时间 */
u64 exec_clock;
/*
每个cfs_rq都会维护一个最小虚拟时间min_vruntime,
这个虚拟时间是一个基准值,每个新添加到当前队列的
se 都会被初始化为当前的 min_vruntime 附近的值,以
保证新添加的执行实体和当前队列上已存在的实体拥有差
不多的执行机会,至于执行多长时间,则是由对应实体的
load 决定,该 load 会决定 se->vruntime 的增长速
度。
*/
u64 min_vruntime;
#ifndef CONFIG_64BIT
u64 min_vruntime_copy;
#endif
/*
cfs_rq 维护的红黑树结构,其中包含一个根节点以及最
左边实体(vruntime最小的实体,对应一个进程)的指针。
*/
struct rb_root_cached tasks_timeline;
/*
* 'curr' points to currently running entity on this cfs_rq.
* It is set to NULL otherwise (i.e when none are currently running).
*/
/*
记录当前 cfs_rq 上特殊的几个实体指针:
1. curr:cfs_rq 上当前正在运行的实体,如果运行的进程
实体不在当前 cfs_rq 上,设置为 NULL。需要注意的是,在
支持组调度的情况下,一个进程 se 运行,被设置为当前
cfs_rq 的 curr,同时其 parent 也会被设置为同级 cfs_rq
的 curr.
2.next:用户特别指定的需要在下一次调度中执行的进程实
体,但是这并不是绝对的,只有在 next 指定的进程实体快
要运行(但可能不是下次)的时候,因为这时候不会造成太大
的不公平,就会运行指定的 next,也是一种临时提高优先级
的做法。
3. last:上次执行过的实体不应该跨越公平性原则执行,比
如将 next 设置为 last,这时候就需要仔细斟酌一下了,也
是保证公平性的一种方法。
*/
struct sched_entity *curr;
struct sched_entity *next;
struct sched_entity *last;
struct sched_entity *skip;
#ifdef CONFIG_SCHED_DEBUG
unsigned int nr_spread_over;
#endif
#ifdef CONFIG_SMP
/*
* CFS load tracking
*/
/*
在多核 CPU 中,对当前 cfs_rq 的负载统计,该统计会精确
到每个 se,自然也就会传递到 cfs_rq,下面的几个成员用
于负载统计。
*/
struct sched_avg avg;
#ifndef CONFIG_64BIT
u64 load_last_update_time_copy;
#endif
struct {
raw_spinlock_t lock ____cacheline_aligned;
int nr;
unsigned long load_avg;
unsigned long util_avg;
unsigned long runnable_avg;
} removed;
#ifdef CONFIG_FAIR_GROUP_SCHED
unsigned long tg_load_avg_contrib;
long propagate;
long prop_runnable_sum;
/*
* h_load = weight * f(tg)
*
* Where f(tg) is the recursive weight fraction assigned to
* this group.
*/
unsigned long h_load;
u64 last_h_load_update;
struct sched_entity *h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
#endif /* CONFIG_SMP */
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
指向 percpu rq 的指针,在不支持组调度的系统中,
runqueue 上只存在一个 cfs_rq,可以直接结构体的地址偏移
反向获取到 rq 的指针,而支持组调度的 cfs_rq 可能是
root cfs_rq 的子级 cfs_rq,因此需要通过一个指针获取当
前 cfs_rq 所在的 rq。
*/
struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
/*
* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
* a hierarchy). Non-leaf lrqs hold other higher schedulable entities
* (like users, containers etc.)
*
* leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
* This list is used during load balance.
*/
int on_list;
struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */
#ifdef CONFIG_CFS_BANDWIDTH
int runtime_enabled;
s64 runtime_remaining;
u64 throttled_clock;
u64 throttled_clock_task;
u64 throttled_clock_task_time;
int throttled;
int throttle_count;
struct list_head throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};
参考资料
[1] blog.csdn.net/bullbat/art… [2] zhuanlan.zhihu.com/p/363785756