什么是类型嵌入
类型嵌入指的就是在一个类型的定义中嵌入了其他类型。Go 语言支持两种类型嵌入,分别是接口类型的类型嵌入和结构体类型的类型嵌入。
接口类型的类型嵌入
type E interface {
M1()
M2()
}
这个接口类型 E 的方法集合,包含两个方法,分别是 M1 和 M2,它们组成了 E 这个接口类型所代表的接口。如果某个类型实现了方法 M1 和 M2,我们就说这个类型实现了 E 所代表的接口。
此时,我们再定义另外一个接口类型 I,它的方法集合中包含了三个方法 M1、M2 和 M3,如下面代码:
type I interface {
M1()
M2()
M3()
}
我们看到接口类型 I 方法集合中的 M1 和 M2,与接口类型 E 的方法集合中的方法完全相同。在这种情况下,我们可以用接口类型 E 替代上面接口类型 I 定义中 M1 和 M2,如下面代码:
type I interface {
E
M3()
}
像这种在一个接口类型(I)定义中,嵌入另外一个接口类型(E)的方式,就是我们说的接口类型的类型嵌入。
而且,这个带有类型嵌入的接口类型 I 的定义与上面那个包含 M1、M2 和 M3 的接口类型 I 的定义,是等价的。因此,我们可以得到一个结论,这种接口类型嵌入的语义就是新接口类型(如接口类型 I)将嵌入的接口类型(如接口类型 E)的方法集合,并入到自己的方法集合中。
我们在 Go 标准库中可以看到很多这种组合方式的应用,最常见的莫过于 io 包中一系列接口的定义了。比如,io 包的 ReadWriter、ReadWriteCloser 等接口类型就是通过嵌入 Reader、Writer 或 Closer 三个基本的接口类型组合而成的。下面是仅包含单一方法的 io 包 Reader、Writer 和 Closer 的定义:
// $GOROOT/src/io/io.go
type Reader interface {
Read(p []byte) (n int, err error)
}
type Writer interface {
Write(p []byte) (n int, err error)
}
type Closer interface {
Close() error
}
下面的 io 包的 ReadWriter、ReadWriteCloser 等接口类型,通过嵌入上面基本接口类型组合而形成:
type ReadWriter interface {
Reader
Writer
}
type ReadCloser interface {
Reader
Closer
}
type WriteCloser interface {
Writer
Closer
}
type ReadWriteCloser interface {
Reader
Writer
Closer
}
不过,这种通过嵌入其他接口类型来创建新接口类型的方式,在 Go 1.14 版本之前是有约束的:如果新接口类型嵌入了多个接口类型,这些嵌入的接口类型的方法集合不能有交集,同时嵌入的接口类型的方法集合中的方法名字,也不能与新接口中的其他方法同名。
但自 Go 1.14 版本开始,Go 语言去除了这些约束。
结构体类型的类型嵌入
type S struct {
A int
b string
c T
p *P
_ [10]int8
F func()
}
带有嵌入字段(Embedded Field)的结构体定义
type T1 int
type t2 struct{
n int
m int
}
type I interface {
M1()
}
type S1 struct {
T1
*t2
I
a int
b string
}
我们看到,结构体 S1 定义中有三个“非常规形式”的标识符,分别是 T1、t2 和 I,这三个标识符究竟代表的是什么呢?是字段名还是字段的类型呢?这里我直接告诉你答案:它们既代表字段的名字,也代表字段的类型。我们分别以这三个标识符为例,说明一下它们的具体含义:
- 标识符 T1 表示字段名为 T1,它的类型为自定义类型 T1;
- 标识符 t2 表示字段名为 t2,它的类型为自定义结构体类型 t2 的指针类型;
- 标识符 I 表示字段名为 I,它的类型为接口类型 I。
这种以某个类型名、类型的指针类型名或接口类型名,直接作为结构体字段的方式就叫做结构体的类型嵌入,这些字段也被叫做嵌入字段(Embedded Field)。
type MyInt int
func (n *MyInt) Add(m int) {
*n = *n + MyInt(m)
}
type t struct {
a int
b int
}
type S struct {
*MyInt
t
io.Reader
s string
n int
}
func main() {
m := MyInt(17)
r := strings.NewReader("hello, go")
s := S{
MyInt: &m,
t: t{
a: 1,
b: 2,
},
Reader: r,
s: "demo",
}
var sl = make([]byte, len("hello, go"))
s.Reader.Read(sl)
fmt.Println(string(sl)) // hello, go
s.MyInt.Add(5)
fmt.Println(*(s.MyInt)) // 22
}
首先,这个例子中的结构体类型 S 使用了类型嵌入方式进行定义,它有三个嵌入字段 MyInt、t 和 Reader。这里,你可能会问,为什么第三个嵌入字段的名字为 Reader 而不是 io.Reader?这是因为,Go 语言规定如果结构体使用从其他包导入的类型作为嵌入字段,比如 pkg.T,那么这个嵌入字段的字段名就是 T,代表的类型为 pkg.T。
接下来,我们再来看结构体类型 S 的变量的初始化。我们使用 field:value 方式对 S 类型的变量 s 的各个字段进行初始化。和普通的字段一样,初始化嵌入字段时,我们可以直接用嵌入字段名作为 field。
而且,通过变量 s 使用这些嵌入字段时,我们也可以像普通字段那样直接用变量s+字段选择符.+嵌入字段的名字,比如 s.Reader。我们还可以通过这种方式调用嵌入字段的方法,比如 s.Reader.Read 和 s.MyInt.Add。
这样看起来,嵌入字段的用法和普通字段没啥不同呀?也不完全是,Go 还是对嵌入字段有一些约束的。比如,和 Go 方法的 receiver 的基类型一样,嵌入字段类型的底层类型不能为指针类型。而且,嵌入字段的名字在结构体定义也必须是唯一的,这也意味这如果两个类型的名字相同,它们无法同时作为嵌入字段放到同一个结构体定义中。不过,这些约束你了解一下就可以了,一旦违反,Go 编译器会提示你的。
“实现继承”的原理
我们将上面例子代码做一下细微改动,我这里只列了变化部分的代码:
var sl = make([]byte, len("hello, go"))
s.Read(sl)
fmt.Println(string(sl))
s.Add(5)
fmt.Println(*(s.MyInt))
这两个方法就来自结构体类型 S 的两个嵌入字段 Reader 和 MyInt。结构体类型 S“继承”了 Reader 字段的方法 Read 的实现,也“继承”了 *MyInt 的 Add 方法的实现。注意,我这里的“继承”用了引号,说明这并不是真正的继承,它只是 Go 语言的一种“障眼法”。
这种“障眼法”的工作机制是这样的,当我们通过结构体类型 S 的变量 s 调用 Read 方法时,Go 发现结构体类型 S 自身并没有定义 Read 方法,于是 Go 会查看 S 的嵌入字段对应的类型是否定义了 Read 方法。这个时候,Reader 字段就被找了出来,之后 s.Read 的调用就被转换为 s.Reader.Read 调用。
类型嵌入这种看似“继承”的机制,实际上是一种组合的思想。更具体点,它是一种组合中的代理(delegate)模式,如下图所示:
我们看到,S 只是一个代理(delegate),对外它提供了它可以代理的所有方法,如例子中的 Read 和 Add 方法。当外界发起对 S 的 Read 方法的调用后,S 将该调用委派给它内部的 Reader 实例来实际执行 Read 方法。
结构体类型中嵌入接口类型
type I interface {
M1()
M2()
}
type T struct {
I
}
func (T) M3() {}
func main() {
var t T
var p *T
dumpMethodSet(t)
dumpMethodSet(p)
}
运行这个示例,我们会得到以下结果:
main.T's method set:
- M1
- M2
- M3
*main.T's method set:
- M1
- M2
- M3
我们可以看到,原本结构体类型 T 只带有一个方法 M3,但在嵌入接口类型 I 后,结构体类型 T 的方法集合中又并入了接口类型 I 的方法集合。并且,由于 *T 类型方法集合包括 T 类型的方法集合,因此无论是类型 T 还是类型 *T,它们的方法集合都包含 M1、M2 和 M3。于是我们可以得出一个结论:结构体类型的方法集合,包含嵌入的接口类型的方法集合。
不过有一种情况,你要注意一下,那就是当结构体嵌入的多个接口类型的方法集合存在交集时,你要小心编译器可能会出现的错误提示。
嵌入了其他类型的结构体类型本身是一个代理,在调用其实例所代理的方法时,Go 会首先查看结构体自身是否实现了该方法。
如果实现了,Go 就会优先使用结构体自己实现的方法。如果没有实现,那么 Go 就会查找结构体中的嵌入字段的方法集合中,是否包含了这个方法。如果多个嵌入字段的方法集合中都包含这个方法,那么我们就说方法集合存在交集。这个时候,Go 编译器就会因无法确定究竟使用哪个方法而报错,下面的这个例子就演示了这种情况:
type E1 interface {
M1()
M2()
M3()
}
type E2 interface {
M1()
M2()
M4()
}
type T struct {
E1
E2
}
func main() {
t := T{}
t.M1()
t.M2()
}
运行这个例子,我们会得到:
main.go:22:3: ambiguous selector t.M1
main.go:23:3: ambiguous selector t.M2
其实有两种解决方案。一是,我们可以消除 E1 和 E2 方法集合存在交集的情况。二是为 T 增加 M1 和 M2 方法的实现,这样的话,编译器便会直接选择 T 自己实现的 M1 和 M2,不会陷入两难境地。比如,下面的例子演示的就是 T 增加了 M1 和 M2 方法实现的情况:
... ...
type T struct {
E1
E2
}
func (T) M1() { println("T's M1") }
func (T) M2() { println("T's M2") }
func main() {
t := T{}
t.M1() // T's M1
t.M2() // T's M2
}
结构体类型嵌入接口类型在日常编码中有一个妙用,就是可以简化单元测试的编写。由于嵌入某接口类型的结构体类型的方法集合包含了这个接口类型的方法集合,这就意味着,这个结构体类型也是它嵌入的接口类型的一个实现。即便结构体类型自身并没有实现这个接口类型的任意一个方法,也没有关系。我们来看一个直观的例子:
package employee
type Result struct {
Count int
}
func (r Result) Int() int { return r.Count }
type Rows []struct{}
type Stmt interface {
Close() error
NumInput() int
Exec(stmt string, args ...string) (Result, error)
Query(args []string) (Rows, error)
}
// 返回男性员工总数
func MaleCount(s Stmt) (int, error) {
result, err := s.Exec("select count(*) from employee_tab where gender=?", "1")
if err != nil {
return 0, err
}
return result.Int(), nil
}
在这个例子中,我们有一个 employee 包,这个包中的方法 MaleCount,通过传入的 Stmt 接口的实现从数据库获取男性员工的数量。现在我们的任务是要对 MaleCount 方法编写单元测试代码。对于这种依赖外部数据库操作的方法,我们的惯例是使用“伪对象(fake object)”来冒充真实的 Stmt 接口实现。不过现在有一个问题,那就是 Stmt 接口类型的方法集合中有四个方法,而 MaleCount 函数只使用了 Stmt 接口的一个方法 Exec。如果我们针对每个测试用例所用的伪对象都实现这四个方法,那么这个工作量有些大。
那么这个时候,我们怎样快速建立伪对象呢?结构体类型嵌入接口类型便可以帮助我们,下面是我们的解决方案:
package employee
import "testing"
type fakeStmtForMaleCount struct {
Stmt
}
func (fakeStmtForMaleCount) Exec(stmt string, args ...string) (Result, error) {
return Result{Count: 5}, nil
}
func TestEmployeeMaleCount(t *testing.T) {
f := fakeStmtForMaleCount{}
c, _ := MaleCount(f)
if c != 5 {
t.Errorf("want: %d, actual: %d", 5, c)
return
}
}
结构体类型中嵌入结构体类型
type T1 struct{}
func (T1) T1M1() { println("T1's M1") }
func (*T1) PT1M2() { println("PT1's M2") }
type T2 struct{}
func (T2) T2M1() { println("T2's M1") }
func (*T2) PT2M2() { println("PT2's M2") }
type T struct {
T1
*T2
}
func main() {
t := T{
T1: T1{},
T2: &T2{},
}
dumpMethodSet(t)
dumpMethodSet(&t)
}
在这个例子中,结构体类型 T 有两个嵌入字段,分别是 T1 和 *T2,根据上一讲中我们对结构体的方法集合的讲解,我们知道 T1 与 *T1、T2 与 *T2 的方法集合是不同的:
- T1 的方法集合包含:T1M1;
- *T1 的方法集合包含:T1M1、PT1M2;
- T2 的方法集合包含:T2M1;
- *T2 的方法集合包含:T2M1、PT2M2。
它们作为嵌入字段嵌入到 T 中后,对 T 和 *T 的方法集合的影响也是不同的。我们运行一下这个示例,看一下输出结果:
main.T's method set:
- PT2M2
- T1M1
- T2M1
*main.T's method set:
- PT1M2
- PT2M2
- T1M1
- T2M1
通过输出结果,我们看到了 T 和 *T 类型的方法集合果然有差别的:
- 类型 T 的方法集合 = T1 的方法集合 + *T2 的方法集合
- 类型 *T 的方法集合 = *T1 的方法集合 + *T2 的方法集合
defined 类型与 alias 类型的方法集合
Go 语言中,凡通过类型声明语法声明的类型都被称为 defined 类型,下面是一些 defined 类型的声明的例子:
type I interface {
M1()
M2()
}
type T int
type NT T // 基于已存在的类型T创建新的defined类型NT
type NI I // 基于已存在的接口类型I创建新defined接口类型NI
对于那些基于接口类型创建的 defined 的接口类型,它们的方法集合与原接口类型的方法集合是一致的。但对于基于非接口类型的 defined 类型创建的非接口类型,我们通过下面例子来看一下:
package main
type T struct{}
func (T) M1() {}
func (*T) M2() {}
type T1 T
func main() {
var t T
var pt *T
var t1 T1
var pt1 *T1
dumpMethodSet(t)
dumpMethodSet(t1)
dumpMethodSet(pt)
dumpMethodSet(pt1)
}
main.T's method set:
- M1
main.T1's method set is empty!
*main.T's method set:
- M1
- M2
*main.T1's method set is empty!
从输出结果上看,新类型 T1 并没有“继承”原 defined 类型 T 的任何一个方法。从逻辑上来说,这也符合 T1 与 T 是两个不同类型的语义。
无论原类型是接口类型还是非接口类型,类型别名都与原类型拥有完全相同的方法集合。
此文章为3月Day17学习笔记,内容来源于极客时间《Tony Bai · Go 语言第一课》。