基于飞桨在MNIST数据集分类提升准确率到0.985以上实践
本实践通过尝试数据增强、更换优化器、学习率等各种办法来提高准确率。
1.导入库
# 飞桨库
import paddle
# numpy库
import numpy as np
#数据处理
from data_process import get_MNIST_dataloader
#加载数据
train_loader, test_loader = get_MNIST_dataloader()
2.data_process.py数据处理
主要是导入飞桨数据增强库,这次用到了随机颜色变幻、亮度调整和归一化。
import paddle
from paddle.vision.transforms import Compose, ColorJitter, BrightnessTransform, Normalize
def get_MNIST_dataloader():
# 定义图像归一化处理方法,这里的CHW指图像格式需为 [C通道数,H图像高度,W图像宽度]
transform = Compose([ColorJitter(), BrightnessTransform(0.3), Normalize(mean=[127.5], std=[127.5], data_format='CHW')])
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
# 定义并初始化数据读取器
train_loader = paddle.io.DataLoader(train_dataset, batch_size=1024, shuffle=True, num_workers=1, drop_last=True)
test_loader = paddle.io.DataLoader(test_dataset, batch_size=256, shuffle=False, num_workers=1, drop_last=False)
return train_loader, test_loader
由上可见,对数据进行了增强,同时使用了GPU,训练batch_size拉大到1024,提高了训练速度。
3.模型定义
如修改网络结构、优化器、损失函数、学习率等,提升模型评估准确率
# 定义模型结构
import paddle.nn.functional as F
from paddle.nn import Conv2D, MaxPool2D, Linear
# 多层卷积神经网络实现(可修改,例如加深网络层级)
class MNIST(paddle.nn.Layer):
def __init__(self):
super(MNIST, self).__init__()
# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
# 定义池化层,池化核的大小kernel_size为2,池化步长为2
self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
# 定义池化层,池化核的大小kernel_size为2,池化步长为2
self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
# 定义一层全连接层,输出维度是10
self.fc = Linear(in_features=980, out_features=10)
self.dropout = paddle.nn.Dropout(0.2)
# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
# 卷积层激活函数使用Relu,全连接层激活函数使用softmax
def forward(self, inputs, label):
x = self.conv1(inputs)
x = F.relu(x)
x = self.max_pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.dropout(x)
paddle.nn.Dropout(0.2),
x = self.max_pool2(x)
x = paddle.reshape(x, [x.shape[0], 980])
x = self.fc(x)
if label is not None:
acc = paddle.metric.accuracy(input=x, label=label)
return x, acc
else:
return x
模型定义使用了最常见的CNN模型,其中:
- 使用了relu
- 使用了dropout
- 试用了卷积
- 使用了最大池化
4.模型训练
训练主要是:
- 使用train()模式
- 定义优化器
- 使用Adamx算法
- 按batch读取数据并转换为tensor
- 进行前向计算
- 计算交叉损失
- 计算acc
- 加入逻辑判断,保存最佳训练模型
#在使用GPU机器时,可以将use_gpu变量设置成True
use_gpu = True
# paddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')
#仅优化算法的设置有所差别
def train(model):
model = MNIST()
model.train()
#可以选择其他优化算法的设置方案(可修改)
scheduler = paddle.optimizer.lr.StepDecay(learning_rate=0.001, step_size=2, gamma=0.1)
opt = paddle.optimizer.Adamax(scheduler,
parameters=model.parameters())
# opt = paddle.optimizer.Adamax(learning_rate=0.001, parameters=model.parameters())
best_acc=0.0
#训练epoch(可修改)
EPOCH_NUM = 50
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_loader()):
#准备数据
images, labels = data
images = paddle.to_tensor(images)
labels = paddle.to_tensor(labels)
#前向计算的过程
predicts, acc = model(images, labels)
#计算损失,取一个批次样本损失的平均值(可修改)
loss = F.cross_entropy(predicts, labels)
avg_loss = paddle.mean(loss)
#每训练了100批次的数据,打印下当前Loss的情况
if batch_id % 100 == 0:
print("epoch: {}, batch: {}, loss is: {}, acc is {}".format(epoch_id, batch_id, avg_loss.numpy(), acc.numpy()))
# 保存最佳模型
if acc.numpy()> best_acc:
best_acc=acc.numpy()
#保存模型参数
paddle.save(model.state_dict(), 'mnist.pdparams')
#后向传播,更新参数,消除梯度的过程
avg_loss.backward()
opt.step()
opt.clear_grad()
#创建模型
model = MNIST()
#启动训练过程
train(model)
epoch: 37, batch: 0, loss is: [0.02620594], acc is [0.9921875]
epoch: 38, batch: 0, loss is: [0.0320667], acc is [0.9863281]
epoch: 39, batch: 0, loss is: [0.04298836], acc is [0.9892578]
epoch: 40, batch: 0, loss is: [0.03134251], acc is [0.9892578]
epoch: 41, batch: 0, loss is: [0.03572175], acc is [0.9892578]
epoch: 42, batch: 0, loss is: [0.03592779], acc is [0.9902344]
epoch: 43, batch: 0, loss is: [0.04096694], acc is [0.98535156]
epoch: 44, batch: 0, loss is: [0.03150718], acc is [0.9921875]
epoch: 45, batch: 0, loss is: [0.02737371], acc is [0.99316406]
epoch: 46, batch: 0, loss is: [0.0292511], acc is [0.9892578]
epoch: 47, batch: 0, loss is: [0.02851657], acc is [0.9892578]
epoch: 48, batch: 0, loss is: [0.03205686], acc is [0.9892578]
epoch: 49, batch: 0, loss is: [0.0311618], acc is [0.9873047]
5.模型评估
主要是:
- 使用Paddle.load()加载保存的模型
- 使用paddle.eval()模式
- 加载验证数据集
- 计算多个batch的平均损失和准确率
def evaluation(model):
print('start evaluation .......')
# 定义预测过程
params_file_path = 'mnist.pdparams'
# 加载模型参数
param_dict = paddle.load(params_file_path)
model.load_dict(param_dict)
model.eval()
eval_loader = test_loader
acc_set = []
avg_loss_set = []
for batch_id, data in enumerate(eval_loader()):
images, labels = data
images = paddle.to_tensor(images)
labels = paddle.to_tensor(labels)
predicts, acc = model(images, labels)
loss = F.cross_entropy(input=predicts, label=labels)
avg_loss = paddle.mean(loss)
acc_set.append(float(acc.numpy()))
avg_loss_set.append(float(avg_loss.numpy()))
#计算多个batch的平均损失和准确率
acc_val_mean = np.array(acc_set).mean()
avg_loss_val_mean = np.array(avg_loss_set).mean()
print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))
model = MNIST()
evaluation(model)
start evaluation .......
loss=0.037210724089527504, acc=0.988671875
6.优化总结
- 将学习率改为 0.001
- 修改epoch为 50
- 修改Adam 为 Adamx
- 修改数据增强,添加 ColorJitter 、 BrightnessTransform 模式
- 修改模型保存机制,只保存最佳模型,而不是最后一轮的模型
本文正在参加「金石计划」