关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))
欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph L)aistudio.baidu.com/aistudio/pr…
因为篇幅关系就只放了部分程序在第三章,如有需求可自行fork项目原始链接。
0.1图计算基本概念
首先看到百度百科定义:
图计算(Graph Processing)是将数据按照图的方式建模可以获得以往用扁平化的视角很难得到的结果。
图(Graph)是用于表示对象之间关联关系的一种抽象数据结构,使用顶点(Vertex)和边(Edge)进行描述:顶点表示对象,边表示对象之间的关系。可抽象成用图描述的数据即为图数据。图计算,便是以图作为数据模型来表达问题并予以解决的这一过程。以高效解决图计算问题为目标的系统软件称为图计算系统。
大数据时代,数据之间存在关联关系。由于图是表达事物之间复杂关联关系的组织结构,因此现实生活中的诸多应用场景都需要用到图,例如,淘宝用户好友关系图、道路图、电路图、病毒传播网、国家电网、文献网、社交网和知识图谱。
为了从这些数据之间的关联关系中获取有用信息,大量图算法层